Skip to main content
Log in

Properties of NAD (P) H Azoreductase from Alkaliphilic Red Bacteria Aquiflexum sp. DL6

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Azoreductase plays a key role in bioremediation and biotransformation of azo dyes. It initializes the reduction of azo bond in azo dye metabolism under aerobic or anaerobic conditions. In the present study, we isolated an alkaliphilic red-colored Aquiflexum sp. DL6 bacterial strain and identified by 16S rRNA method. We report nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent azoreductase purified from Aquiflexum sp. DL6 by a combination of ammonium sulfate precipitation and chromatography methods. The azoreductase was purified up to 30-fold with 37 % recovery. The molecular weight was found to be 80 kDa. The optimum activity was observed at pH 7.4 and temperature 60 °C with amaranth azo dye as a substrate. The thermal stability of azoreductase was up to 80 °C. The azoreductase has shown a wide range of substrate specificity, including azo dyes and nitro aromatic compounds. Metal ions have no significant inhibitory action on azoreductase activity. The apparent K m and V max values for amaranth azo dye were 1.11 mM and 30.77 U/mg protein respectively. This NAD (P) H azoreductase represents the first azoreductase to be characterized from alkaliphilic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

EDTA:

Ethylenediaminetetraacetic acid

DTT:

Dithiothreitol

FADH2 :

Flavin adenine dinucleotide (reduced)

FMNH2 :

Flavin mononucleotide (reduced)

DEAE:

Diethylaminoethyl

BLAST:

Basic local alignment search tool

PCR:

Polymerase chain reaction

dNTP:

Deoxyribonucleotide triphosphate

PBS:

Phosphate buffered saline

References

  1. Bin Y, Zhou J, Wang J, Du C, Hou H, Song Z, Bao Y (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Article  Google Scholar 

  2. Blumel S, Busse HJ, Stolz A, Kampfer P (2001) Xenophilus azovorans gen. nov., sp. a soil bacterium able to degrade azo dyes of the Orange II type. Int J Syst Evol Bacteriol 51:1831–1837

    Article  CAS  Google Scholar 

  3. Blumel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphage kullae K24. Appl Microbiol Biotechnol 62:186–190

    Article  CAS  Google Scholar 

  4. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  CAS  Google Scholar 

  5. Bryant C, DeLuca M (1991) Purification and characterization of an oxygen-insensitive NAD (P) H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125

    CAS  Google Scholar 

  6. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  CAS  Google Scholar 

  7. Chen H, Wang RF, Cerniglia CE (2004) Molecular cloning, over expression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310

    Article  CAS  Google Scholar 

  8. Chomczynski P, Mackey K, Drews R, Wilfinger W (1997) DNAzol: a reagent for the rapid isolation of genomic DNA. Biotechniques 22:550–553

    CAS  Google Scholar 

  9. Chung KT, Stevens SE Jr, Cerniglia CR (1992) The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 18:175–190

    Article  CAS  Google Scholar 

  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  11. Ghosh DK, Mandal A, Chaudhuri J (1992) Purification and partial characterization of two azoreductases from Shigella dysenteriae type1. FEMS Microbiol Lett 77:229–233

    Article  CAS  Google Scholar 

  12. Gomes MS, Freire RS, Duran N (2000) Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere 40:369–373

    Article  Google Scholar 

  13. Horikoshi K (1999) Alkaliphiles: Some applications of their products for biotechnology. Microbiol Molbiol Rev 735-750

  14. Hu TL (2001) Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Sci Technol 43:261–269

    CAS  Google Scholar 

  15. Idaka E, Horitsu H, Ogawa T (1987) Some properties of azoreductase produced by Pseudomonas cepacia. Bull Environ Contam Toxicol 39:982–989

    Article  CAS  Google Scholar 

  16. Ishikawa M, Nakajima K, Yanagi M, Yamamoto Y, Yamasato K (2003) Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53:711–720

    Article  CAS  Google Scholar 

  17. Ito K, Nakanishi M, Lee WC, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2008) Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J Biol Chem 283:13889–913896

    Article  CAS  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  19. Liu ZJ, Chen H, Shaw N, Hopper SL, Chen L, Chen S, Cerniglia CE, Wang BC (2007) Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 463:68–77

    Article  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  21. Maier J, Kandelbauer A, Erlacher A, Cavaco-Paulo A, Gubitz GM (2004) A new alkali- thermo stable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844

    Article  CAS  Google Scholar 

  22. Mazumder R, Logan JR, Mikell AT Jr, Hooper SW (1999) Characteristics and purification of an oxygen insensitive azoreductase from Caulobacter subvibrioides strain C7-D. J Ind Microbiol Biotechnol 23:476–483

    Article  CAS  Google Scholar 

  23. Misal SA, Bajoria VD, Lingojwar DP, Gawai KR (2013) Purification and characterization of nitroreductase from red alkaliphilic bacterium Aquiflexum sp. DL6. Appl Biochem Microbiol 49:249–254

    Article  CAS  Google Scholar 

  24. Misal SA, Lingojwar DP, Shinde RM, Gawai KR (2011) Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Process Biochem 46:1264–1269

    Article  CAS  Google Scholar 

  25. Morrison JM, Wright CM, John GH (2012) Identification, Isolation and characterization of a novel azoreductase from Clostridium perfringens. Anaerobe 18:229–234

    Article  CAS  Google Scholar 

  26. Nachiyar CV, Rajakumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enz Microbiol Technol 36:503–509

    Article  CAS  Google Scholar 

  27. Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    Article  CAS  Google Scholar 

  28. Punj S, John GH (2009) Purification and identification of an FMN-dependent NAD (P) H azoreductase from Enterococcus faecalis. Curr Issues Mol Biol 11:59–65

    CAS  Google Scholar 

  29. Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal micro flora. Appl Environ Microbiol 56:2146–2151

    CAS  Google Scholar 

  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  31. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  32. Suzuki Y, Yoda T, Ruhul A, Sugiura W (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp OY1–2 isolated from soil. J Biol Chem 276:9059–9065

    Article  CAS  Google Scholar 

  33. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  34. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  Google Scholar 

  35. Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  36. Zhang F, Knapp JS, Tapley KN (1999) Development of bioreactor systems for decolorization of orange II using white rot fungus. Enz Microbiol Technol 24:49–53

    Google Scholar 

  37. Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Santosh Misal gratefully acknowledges the senior research fellowship from University Grants Commission India, and BCUD, University of Pune for funding to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kachru R. Gawai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misal, S.A., Lingojwar, D.P. & Gawai, K.R. Properties of NAD (P) H Azoreductase from Alkaliphilic Red Bacteria Aquiflexum sp. DL6. Protein J 32, 601–608 (2013). https://doi.org/10.1007/s10930-013-9522-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9522-1

Keywords

Navigation