Skip to main content

Advertisement

Log in

Identification of Histidine Residues Involved in Zn2+ Binding to αA- and αB-Crystallin by Chemical Modification and MALDI TOF Mass Spectrometry

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

α-Crystallin, a member of the small heat shock protein family is the major protein of mammalian eye lens and is a molecular chaperone. As there is no protein turn over in the lens, stability of α-crystallin is one of the most crucial factors for its survival and function. We previously reported that the molecular chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn2+ (Biochemistry, 2008). We also reported that each subunit of α-crystallin could bind multiple zinc ions through inter-subunit bridging giving rise to enhanced stability (Biopolymers, 2011). The amino acid residues involved in zinc binding were not known. Since cysteine residues were not responsible for binding to Zn2+, we tried to identify the histidine residues bound to zinc ions. We modified recombinant αA- and αB-crystallin with diethylpyrocarbonate (DEPC) a histidine modifying reagent, in presence and absence of Zn2+ followed by tryptic digestion. The residues modified by DEPC were identified through peptide mass matching by MALDI mass spectrometry. We have clearly identified H79, H107 and H115 of αA-crystallin and H104, H111 and H119 of αB-crystallin as the Zn2+ binding residues. The significance of the histidine rich sequence region of α-crystallin for its stability is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

DEPC:

Diethylpyrocarbonate

DHAP:

2,5-Dihydroxy acetophenon

HCCA:

α-Cyano-4-hydroxycinnamic acid

IPTG:

Isopropyl-β-d-thiogalactopyranoside

MALDI:

Matrix assisted laser desorption ionization

MS:

Mass spectroscopy

TFA:

Trifluoroacetic acid

TOF:

Time of flight

References

  1. Andley UP, Mathur S, Griest TA, Petrash JM (1996) J Biol Chem 271:31973–31980

    Article  CAS  Google Scholar 

  2. Biswas A, Das KP (2008) Biochemistry 47:804–816

    Article  CAS  Google Scholar 

  3. Biswas A, Das KP (2004) J Biol Chem 279:42648–42657

    Article  CAS  Google Scholar 

  4. Biswas A, Das KP (2007) Protein J 4:247–255

    Article  Google Scholar 

  5. Bova MP, Mchaourab HS, Han Y, Fung BKK (2000) J Biol Chem 275:1035–1042

    Article  CAS  Google Scholar 

  6. Brazil BT, Ybarra J, Horowitz PM (1998) J Biol Chem 273:3257–3263

    Article  CAS  Google Scholar 

  7. Coi A, Bianucci AM, Ganadu ML, Mura GM (2005) Int J Biol Macromol 36:208–214

    Article  CAS  Google Scholar 

  8. Coi A, Bianucci AM, Bonomi F, Rasmussen P, Mura GM, Ganadu ML (2008) Int J Biol Macromol 42:229–234

    Article  CAS  Google Scholar 

  9. Das KP, Petrash JM, Surewicz WK (1996) J Biol Chem 271:10449–10452

    Article  CAS  Google Scholar 

  10. Das KP, Surewicz WK (1995) Biochem J 311:367–370

    CAS  Google Scholar 

  11. Das KP, Surewicz WK (1995) FEBS Lett 369:321–325

    Article  CAS  Google Scholar 

  12. del Valle LJ, Escribano C, Pérez JJ, Garriga P (2002) Biochim Biophys Acta Proteins Proteomics 1601:100–109

    Article  Google Scholar 

  13. Fabe J, Grahn B, Paterson P (2000) Biol Trace Element Res 75:43–52

    Article  CAS  Google Scholar 

  14. Farahbakhsh JT, Huang QL, Ding LL, Altenbach C, Steinhoff HJ, Horwitz J, Hubbell WL (1995) Biochemistry 34:509–516

    Article  CAS  Google Scholar 

  15. Fujii N, Shimmyo Y, Sakai M, Sadakane Y, Nakamura T, Morimoto Y, Kinochi T, Goto Y, Lampi K (2007) Amino Acids 32:87–94

    Article  CAS  Google Scholar 

  16. Ganadu ML, Aru M, Mura GM, Coi A, Mlynarz P, Kozlowski H (2004) J Inorg Biochem 98:1103–1109

    Article  CAS  Google Scholar 

  17. Ghosh KS, Pande A, Pande J (2011) Biochemistry 50:3279–3281

    Article  CAS  Google Scholar 

  18. Glocker MO, Kalkum M, Yamamoto R, Schreurs J (1996) Biochemistry 35:14625–14633

    Article  CAS  Google Scholar 

  19. Grahn BH, Paterson PG, Gottschall-Pass KT, Zhang Z (2001) J Am Coll Nutr 20:106–118

    CAS  Google Scholar 

  20. Hawse JR, Cumming JR, Oppermann B, Sheets NL, Reddy VN, Kantorow M (2003) Invest Ophthalmol Vis Sci 44:672–679

    Article  Google Scholar 

  21. Horwitz J (1992) Proc Natl Acad Sci USA 89:10449–10453

    Article  CAS  Google Scholar 

  22. Horwitz J (1993) Invest Opthalmol Vis Sci 34:10–22

    CAS  Google Scholar 

  23. Horwitz J, Emmons T, Takemoto L (1992) Curr Eye Res 11:817–822

    Article  CAS  Google Scholar 

  24. Iwaki T, Kume-Iwaki A, Liem RKH, Goldman JE (1989) Cell 57:71–78

    Article  CAS  Google Scholar 

  25. Jakob U, Buchner J (1994) Trends Biochem Sci 19:205–211

    Article  CAS  Google Scholar 

  26. Jakob U, Gaestel M, Engel K, Buchner J (1993) J Biol Chem 268:1517–1520

    Google Scholar 

  27. Kalkum M, Przybylski M, Glocker MO (1998) Bioconjugate Chem 9:226–235

    Article  CAS  Google Scholar 

  28. Karmakar S, Das KP (2011) Biopolymers 95:105–116

    Article  CAS  Google Scholar 

  29. Koumantakis E, Alexiou D, Grimanis A, Kaskarelis D, Bouzas A (1983) Ophthalmologica 186:41–46

    Article  CAS  Google Scholar 

  30. Kundu M, Sen PC, Das KP (2007) Biopolymers 86:177–192

    Article  CAS  Google Scholar 

  31. Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Protein Sci 19:1031–1043

    Article  CAS  Google Scholar 

  32. Li C, Rosenberg RC (1993) J Inorg Biochem 51:727–735

    Article  CAS  Google Scholar 

  33. Lippard SJ, Burger AR, Ugurbil K, Pantoliano MW, Valentine JS (1977) Biochemistry 16:1136–1141

    Article  CAS  Google Scholar 

  34. Lowe J, McDermott H, Pike I, Spendlove I, Landon M, Mayer RJ (1992) J Pathol 166:61–68

    Article  CAS  Google Scholar 

  35. Marini I, Bucchioni L, Voltarelli M, Delcorso A, Mura U (1995) Biochem Biophys Res Comm 212:413–420

    Article  CAS  Google Scholar 

  36. Mendoza VL, Vachet RW (2008) Anal Chem 80:2895–2904

    Article  CAS  Google Scholar 

  37. Miles EW (1977) Methods Enzymol 47:431–442

    Article  CAS  Google Scholar 

  38. Narberhaus F (2002) Microbiol Mol Biol Rev 66:64–93

    Article  CAS  Google Scholar 

  39. Qin K, Ying Y, Mastrangelo P, Westaway D (2002) J Biol Chem 277:1981–1990

    Article  CAS  Google Scholar 

  40. Raju M, Santhoshkumar P, Henzl TM, Sharma KK (2011) Free Rad Biol Med 50:1429–1436

    Article  CAS  Google Scholar 

  41. Raman B, Ramakrishna T, Rao CM (1994) J Biol Chem 270:19888–19892

    Google Scholar 

  42. Raman B, Ramakrishna T, Rao CM (1995) FEBS Lett 365:133–136

    Article  CAS  Google Scholar 

  43. Rawat U, Rao M (1998) J Biol Chem 273:9415–9423

    Article  CAS  Google Scholar 

  44. Richardson NL, Higgs DA, Beames R, McBride JR (1985) J Nutr 115:553–567

    CAS  Google Scholar 

  45. Rom S, Gilad A, Kalifa Y, Konrad Z, Karpasas MM, Goldgur Y, Bar-Zvi D (2006) Biochimie 88:621–628

    Article  CAS  Google Scholar 

  46. Saha S, Das KP (2004) Proteins: structure function. Bioinformatics 57:610–617

    CAS  Google Scholar 

  47. Santhoshkumar P, Udupa P, Murugesan R, Sharma KK (2008) J Biol Chem 283:8477–8485

    Article  CAS  Google Scholar 

  48. Sharma KK, Kaur H, Kester K (1997) Biochem Biophys Res Comm 239:217–222

    Article  CAS  Google Scholar 

  49. Sharma KK, Kumar GS, Murphy AS, Kester K (1998) J Biol Chem 273:15474–15478

    Article  CAS  Google Scholar 

  50. Sharma KK, Ortwerth BJ (1995) Exp Eye Res 61:413–421

    Article  CAS  Google Scholar 

  51. Sharma KK, Kumar RS, Kumar GS, Quinn PT (2000) J Biol Chem 275:3767–3771

    Article  CAS  Google Scholar 

  52. Shu N, Zhou T, Hovmöller S (2008) Bioinformatics 24:775–782

    Article  CAS  Google Scholar 

  53. Siezen RJ, Bindels JG, Hoenders HJ (1980) Eur J Biochem 107:243–249

    Article  CAS  Google Scholar 

  54. Srinivasan AN, Nagineni CN, Bhat SP (1992) J Biol Chem 267:23337–23341

    CAS  Google Scholar 

  55. Srivastava OP (1988) Exp Eye Res 47:525–543

    Article  CAS  Google Scholar 

  56. Su SP, McArthur JD, Andrew AJ (2010) Exp Eye Res 91:97–103

    Article  CAS  Google Scholar 

  57. Titball RW, Rubidge T (1990) FEMS Microbiol Lett 68:261–265

    CAS  Google Scholar 

  58. Tsubaki M, Kobayashi K, Ichise T, Takeuchi F, Tagawa S (2000) Biochemistry 39:3276–3284

    Article  CAS  Google Scholar 

  59. van den Ijssel PRLA, Overkamp P, Knauf U, Gaestel M, de Jong WW (1994) FEBS Lett 355:54–56

    Article  Google Scholar 

  60. Victor JN, Barbara VR, Marc JFS (2005) Analyst 130:1087–1097

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a CSIR grant (No. 37/1218/05/EMR-II to K.P.D.). MALDI facility at our Institute was supported by a DST-IRHPA grant. We would like to acknowledge Mr. Dipak Chandra Konar for his assistance in purifying the recombinant αA-and αB-crystallin. Thanks are due to Mr. J. Guin for help with the MALDI experiments. S.K. was supported in part by a senior research fellowship from Bose Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmakar, S., Das, K.P. Identification of Histidine Residues Involved in Zn2+ Binding to αA- and αB-Crystallin by Chemical Modification and MALDI TOF Mass Spectrometry. Protein J 31, 623–640 (2012). https://doi.org/10.1007/s10930-012-9439-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9439-0

Keywords

Navigation