Skip to main content
Log in

Artemin as an Efficient Molecular Chaperone

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Artemin is an abundant thermostable protein in Artemia encysted embryos under stress. It is considered as a stress protein, as its highly regulated expression is associated with stress resistance in this crustacea. In the present study, artemin has been shown to be a potent molecular chaperone with high efficacy. Artemin is capable of inhibiting the chemical aggregation of proteins such as carbonic anhydrase (CA) and horseradish peroxidase (HRP) at unique molar ratios of chaperone to substrates (1:40 and 1:26 for CA and HRP, respectively). Furthermore, it can also enhance refolding yield of these substrates by nearly 50%. The refolding promotion of CA is checked and verified through a sensitive fluorimetric technique. Based on these experiments, artemin showed higher chaperone activity than other chaperones. The evaluation of artemin surface using ANS showed it to be highly hydrophobic, probably resulting in its high efficacy. These results suggest that artemin can be considered a novel low molecular weight chaperone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

ANS:

1-aniline-8-naphthalene-sulfonate

ASA:

Accessible surface area

CA:

Carbonic anhydrase

CS:

Citrate synthase

DNSA:

5-dimethylaminonaphtalene-1-sulfonamide

FRET:

Fluorescence resonance energy transfer

GdmCl:

Guanidinium chloride

HRP:

Horseradish peroxidase

HuTCTP:

Human translationally controlled tumor protein

IPTG:

Isopropyl β-D-thiogalactopyranoside

LB:

Luria-Bertani

LEA:

Late embryogenesis abundant

MDH:

Malate dehydrogenase

Mj:

Methanococcus jannaschii

Ni-NTA:

Nickel-nitrilotriacetic acid

pNPAc:

p-nitrophenyl acetate

PSH:

Protein surface hydrophobicity

SCM:

Single-chain monellin

sHSP:

Small heat shock protein

References

  1. Barzegar A, Yousefi R, Sharifzadeh A, Dalgalarrondo M, Chobert JM, Ganjali MR, Norouzi P, Ehsani MR, Niasari-Naslaji A, Saboury AA, Haertle T, Moosavi-Movahedi AA (2008) Int J Biol Macromol 42:392–399

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  3. Cao A, Wang Z, Wei P, Xu F, Cao J, Lai L (2008) Biochim Biophys Acta 1784:489–495

    CAS  Google Scholar 

  4. Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2006) FEBS J 274:1093–1101

    Article  Google Scholar 

  5. Cherepkova OA, Lyutova EM, Eronina TB, Gurvits BY (2006) Int J Biochem Cell B 38:43–55

    Article  CAS  Google Scholar 

  6. Clegg JS (2001) Comp Biochem Phys B 128:613–624

    Article  CAS  Google Scholar 

  7. Clegg JS (2005) Integr Comp Biol 45:715–724

    Article  CAS  Google Scholar 

  8. Clegg JS (2007) Biol Bull 212:74–81

    Article  CAS  Google Scholar 

  9. Coi A, Bianucci AM, Bonomi F, Rasmussen P, Mura GM, Ganadu ML (2008) Int J Biol Macromol 42:229–234

    Article  CAS  Google Scholar 

  10. Gnanasekar M, Dakshinamoorthy G, Ramaswamy K (2009) Biochem Biophys Res Comm 386:333–337

    Article  CAS  Google Scholar 

  11. Guidetti R, Boschini D, Altiero T, Bertolani R, Rebecchi L (2008) J Exp Biol 211:2296–2302

    Article  Google Scholar 

  12. Hengherr S, Heyer AG, Kohler HR, Schill RO (2008) FEBS J 275:281–288

    Article  CAS  Google Scholar 

  13. Hengherr S, Schill RO, Clegg JS (2011) Comp Biochem Phys A 160:137–142

    Article  CAS  Google Scholar 

  14. Horwitz J (1992) Proc Natl Acad Sci USA 89:10449–10453

    Article  CAS  Google Scholar 

  15. Hu Y, Bojikova-Fournier S, King AM, MacRae TH (2010) Cell Stress Chaperones 16(2):133–141

    Article  Google Scholar 

  16. Jakob U, Gaestel M, Engel K, Buchner J (1993) J Biol Chem 268:517–1520

    Google Scholar 

  17. Jolly C, Morimoto RI (2000) J Natl Cancer I 92:1564–1572

    Article  CAS  Google Scholar 

  18. Khodarahmi R, Yazdanparast R (2005) Int J Biol Macromol 36:191–197

    Article  CAS  Google Scholar 

  19. Khodarahmi R, Beyrami M, Soori H (2008) Arch Biochem Biophys 47:67–76

    Article  Google Scholar 

  20. Kim R, Kim KK, Yokota H, Kim SH (1998) Proc Natl Acad Sci USA 95:9129–9133

    Article  CAS  Google Scholar 

  21. Kumar MS, Kapoor M, Sinha S, Reddy GB (2005) J Biol Chem 280:21726–21730

    Article  CAS  Google Scholar 

  22. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  23. Lavens P, Sorgeloos P (1987) Artemia Res Its Appl 3:27–63

    Google Scholar 

  24. Lee GJ, Pokala N, Vierling E (1995) J Biol Chem 270:10432–10438

    Article  CAS  Google Scholar 

  25. Li HN, Ci YX (1995) Anal Chim Acta 317:353–357

    Article  CAS  Google Scholar 

  26. Liang P, Amons R, MacRae TH, Clegg JS (1997) Eur J Biochem 243:225–232

    Article  CAS  Google Scholar 

  27. Lindner RA, Kapur A, Mariani M, Titmuss SJ, Carver JA (1998) Eur J Biochem 258:170–183

    Article  CAS  Google Scholar 

  28. Ma X, Jamil K, MacRae TH, Clegg JS, Russell JM, Villeneuve TS, Euloth M, Sun Y, Crowe JH, Tablin F, Oliver AE (2005) Cryobiology 51:15–28

    Article  CAS  Google Scholar 

  29. MacRae TH (2003) Semin Cell Dev Biol 14:251–258

    Article  CAS  Google Scholar 

  30. MacRae TH (2005) J Biol Res 3:3–14

    CAS  Google Scholar 

  31. MacRae TH (2010) Cell Mol Life Sci 3:3–14

    Google Scholar 

  32. Matsuzaki M, Kiso Y, Yamamoto I, Satoh T (1998) J Bacteriol 180:2718–2722

    CAS  Google Scholar 

  33. Morgan PE, Treweek TM, Lindner RA, Price WE, Carver JA (2005) J Agric Food Chem 53:2670–2683

    Article  CAS  Google Scholar 

  34. Narberhaus F (2002) Microbiol Mol Biol R 66:64–93

    Article  CAS  Google Scholar 

  35. Nunes BS, Carvalho FD, Guilhermino LM, Stappen GV (2006) Environ Pollut 144:453–462

    Article  CAS  Google Scholar 

  36. Ou WB, Luo W, Park YD, Zhou HM (2001) Protein Sci 10:2346–2353

    Article  CAS  Google Scholar 

  37. Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C (2009) BMC Struct Biol 9:51

    Article  Google Scholar 

  38. Pocker Y, Stone J (1967) Biochemistry 6:668–678

    Article  CAS  Google Scholar 

  39. Poon S, Treweek TM, Wilson MR, Easterbrook SB, Carver JA (2002) FEBS Lett 513:59–266

    Article  Google Scholar 

  40. Qiu Z, MacRae TH (2008) Biochem J 411:605–611

    Article  CAS  Google Scholar 

  41. Qiu Z, MacRae TH (2008) FEBS J 275:3556–3566

    Article  CAS  Google Scholar 

  42. Rasti B, Shahangian SS, Sajedi RH, Taghdir M, Hasannia S, Ranjbar B (2009) Biochim Biophys Acta 1794:1407–1413

    CAS  Google Scholar 

  43. Reddy GB, Narayanan S, Reddy PY, Surolia I (2002) FEBS Lett 522:59–64

    Article  CAS  Google Scholar 

  44. Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G (1998) Bioinformatics 14:523–528

    Article  CAS  Google Scholar 

  45. Schill RO, Fritz GB (2008) J Zool 276:103–107

    Article  Google Scholar 

  46. Schill RO, Mali B, Dandekar T, Schnolzer M, Reuter D, Frohme M (2009) Biotech Advan 27:348–352

    Article  CAS  Google Scholar 

  47. Sheluho D, Ackerman SH (2001) J Biol Chem 276:39945–39949

    Article  CAS  Google Scholar 

  48. Shirzad F, Sajedi RH, Shahangian SS, Rasti B, Taghdir M, Mosadegh B, Hosseinkhani S (2011) Int J Biol Macromol 49(3):311–316

    Article  CAS  Google Scholar 

  49. Singh R, Rao CM (2002) FEBS Lett 527:234–238

    Article  CAS  Google Scholar 

  50. Sun Y, MacRae TH (2005) Cell Mol Life Sci 62:2460–2476

    Article  CAS  Google Scholar 

  51. Tiroli AO, Ramos CHI (2007) Int J Biochem Cell B 39:818–831

    Article  CAS  Google Scholar 

  52. Trinder P (1966) Ann Clin Biochem 6:24–27

    Google Scholar 

  53. Warner AH, Brunet RT, MacRae TH, Clegg JS (2004) Arch Biochem Biophys 424:189–200

    Article  CAS  Google Scholar 

  54. Welnicz W, Grohme MA, Kaczmarek L, Schill RO, Frohme M (2011) J Insect Physiol 57:577–583

    Article  CAS  Google Scholar 

  55. Zhang X, Fu X, Zhang H, Liu C, Jiao W, Chang Z (2005) Int J Biochem Cell B 37:1232–1240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor James S. Clegg, Mr. Mehdi Rassa and Dr. Shahram Shahangian for their help. The authors express their gratitude to the Research Council of the University of Guilan and the Ministry of Science, Research and Technology for financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza H. Sajedi.

Additional information

S. Shirin Shahangian and B. Rasti have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahangian, S.S., Rasti, B., Sajedi, R.H. et al. Artemin as an Efficient Molecular Chaperone. Protein J 30, 549–557 (2011). https://doi.org/10.1007/s10930-011-9359-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9359-4

Keywords

Navigation