Skip to main content
Log in

Characterization of Cold-Shock Protein A of Antarctic Streptomyces sp. AA8321

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstact

Polar organisms should have mechanisms to survive the extremely cold environment. Four genes encoding cold-shock proteins, which are small, cold-induced bacterial proteins, have been cloned from the Antarctic bacterium Streptomyces sp. AA8321. Since the specific functions of any polar bacterial or Streptomyces cold-shock proteins have not yet been determined, we examined the role of cold-shock protein A from Streptomyces sp. AA8321 (CspASt). Gel filtration chromatography showed that purified CspASt exists as a homodimer under physiological conditions, and gel shift assays showed that it binds to single-stranded, but not double-stranded, DNA. Overexpression of CspASt in Escherichia coli severely impaired the ability of the host cells to form colonies, and the cells developed an elongated morphology. Incorporation of a deoxynucleoside analogue, 5-bromo-2′-deoxyuridine, into newly synthesized DNA was also drastically diminished in CspASt-overexpressing cells. These results suggest that CspASt play a role in inhibition of DNA replication during cold-adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

BrdU:

5-bromo-2′-deoxyuridine

CD:

circular dichroism

Csp:

cold shock protein

CspASt :

cold-shock protein A from Streptomyces sp. AA8321

dNTP:

deoxynucleotide triphosphate

dsDNA:

double-stranded DNA

ssDNA:

single-stranded DNA

References

  • Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (1987). Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Av-Gay Y., Aharonowitz Y., Cohen G. (1992). Nucleic Acids Res. 20: 5478

    Article  CAS  Google Scholar 

  • Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H., Harper D., Bateman A., Brown S., Chandra G., Chen C. W., Collins M., Cronin A., Fraser A., Goble A., Hidalgo J., Hornsby T., Howarth S., Huang C. H., Kieser T., Larke L., Murphy L., Oliver K., O’Neil S., Rabbinowitsch E., Rajandream M. A., Rutherford K., Rutter S., Seeger K., Saunders D., Sharp S., Squares R., Squares S., Taylor K., Warren T., Wietzorrek A., Woodward J., Barrell B. G., Parkhill J., Hopwood D. A. (2002). Nature 417: 141–147

    Article  Google Scholar 

  • Doering, D. (1992). Functional and Structural Studies of a Small F-actin Binding Domain, Ph.D. thesis, Massachusetts Institute of Technology, MA

  • Ermolenko D. N., Makhatadze G. I. (2002). Cell. Mol. Life Sci. 59: 1902–1913

    Article  CAS  Google Scholar 

  • Graumann P., Schroder K., Schmid R., Marahiel M. A. (1996). J. Bacteriol. 178: 4611–4619

    CAS  Google Scholar 

  • Graumann P. L., Marahiel M. A. (1998). Trends Biochem. Sci. 23: 286–290

    Article  CAS  Google Scholar 

  • Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S. (2003). Nat. Biotechnol. 21: 526–531

    Article  Google Scholar 

  • Im H., Woo M.-S., Hwang K. Y., Yu M.-H. (2002). J. Biol. Chem. 277: 46347–46354

    Article  CAS  Google Scholar 

  • Jiang W., Hou Y., Inouye M. (1997). J. Biol. Chem. 272: 196–202

    Article  CAS  Google Scholar 

  • Jones P. G., VanBogelen R. A., Neidhardt F. C. (1987). J. Bacteriol. 169: 2092–2095

    CAS  Google Scholar 

  • Kormanec J., Ševčíková B. (2000). Mol. Gen. Genet. 264: 251–256

    Article  CAS  Google Scholar 

  • Kremer W., Schuler B., Harrieder S., Geyer M., Gronwald W., Welker C., Jaenicke R., Kalbitzer H. R. (2001). Eur. J. Biochem. 268: 2527–2539

    Article  CAS  Google Scholar 

  • Landsman D. (1992). Nucleic Acids Res. 20: 2861–2864

    Article  CAS  Google Scholar 

  • Lopez M. M., Makhatadze G. I. (2000). Biochem. Biophys. Acta 1479: 196–202

    CAS  Google Scholar 

  • Martínez-Costa O.-H., Zalacaín M., Holmes D. J., Malpartida F. (2003). FEMS Microbiol. Lett. 220: 215–221

    Article  Google Scholar 

  • Mikulík K., Khanh-Hoang Q., Halada P., Bezouskova S., Benada O., Behal V. (1999). Biochem. Biolphys. Res. Commun. 265: 305–310

    Article  Google Scholar 

  • Nakashima K., Kanamaru K., Mizuno T., Horikoshi K. (1996). J. Bacteriol. 178: 2994–2997

    CAS  Google Scholar 

  • Newkirk K., Feng W., Jiang W., Tejiro R., Emerson S. D., Inouye M., Montelione G. T. (1994). Proc. Natl. Acad. Sci. USA 91: 5114–5118

    Article  CAS  Google Scholar 

  • Omura S., Ikeda H., Ishikawa J., Hanamoto A., Takahashi C., Shinose M., Takahashi Y., Horikawa H., Nakazawa H., Osonoe T., Kikuchi H., Shiba T., Sakaki Y., Hattori M. (2001). Proc. Natl. Acad. Sci. USA 98: 12215–12220

    Article  CAS  Google Scholar 

  • Phadtare S., Hwang J., Severinov K., Inouye M. (2003). Genes Cells 8: 801–810

    Article  CAS  Google Scholar 

  • Phadtare S. (2004). Curr. Issues Mol. Biol. 6: 125–136

    CAS  Google Scholar 

  • Schindelin H., Marahiel M. A., Heinemann U. (1993). Nature 364: 164–168

    Article  CAS  Google Scholar 

  • Schindelin H., Jiang W., Inouye M., Heinemann U. (1994). Proc. Natl. Acad. Sci. USA 91: 5119–5123

    Article  CAS  Google Scholar 

  • Thompson J. D., Higgins D. G., Gibson T. J. (1994). Nucleic Acids Res. 22: 4673–4680

    Article  CAS  Google Scholar 

  • Wang N., Yamanaka K., Inouye M. (1999). J. Bacteriol. 181: 1603–1609

    CAS  Google Scholar 

  • Xia B., Ke H., Inouye M. (2001). Mol. Microbiol. 40: 179–188

    Article  CAS  Google Scholar 

  • Yamanaka K., Inouye M. (1997). J. Bacteriol. 179: 5126–5130

    CAS  Google Scholar 

  • Yamanaka K., Fang L., Inouye M. (1998). Mol. Microbiol. 27: 247–255

    Article  CAS  Google Scholar 

  • Yamanaka, K., Zheng, W., Crooke, E., Wang, Y. H., Inouye, M. (2001). Mol. Microbiol. 39 : 1572–1584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported from grant number R01-2006-000-11154-0 from the Basic Research Program of the Korea Science & Engineering Foundation, Grant PM05090 from the Korea Ministry of Maritime Affairs and Fisheries, and grant number FPR05B2-211 of 21C Frontier Functional Proteomics Program from the Korea Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MJ., Lee, Y.K., Lee, H.K. et al. Characterization of Cold-Shock Protein A of Antarctic Streptomyces sp. AA8321. Protein J 26, 51–59 (2007). https://doi.org/10.1007/s10930-006-9044-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-006-9044-1

Keywords

Navigation