Skip to main content
Log in

Highly Stretchable Biobased Poly(butylene succinate)-Based Copolyesters with Shape Memory and Self-Healing Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a series of poly(butylene succinate)-based copolymers containing various quantities of dimethyl 2,6-naphthalene dicarboxylate (NDC) were synthesized via melt polymerization. The thermal stabilities of the copolymers were maintained, while a slight increment in the stability was observed as the NDC content increased. The results of differential scanning calorimetry and wide-angle X-ray diffraction demonstrated a reduction in the crystallizability of the copolymers with increasing NDC concentration. Unexpectedly, the tensile tests showed significant enhancement of the elongation rate from 122.5 to 2645.0% as the NDC content increased from 0 to 32 mol%. Samples with 28, 30, and 32 mol% NDC showed remarkable abilities with recovery rates above 90% after three test cycles. Moreover, apparent cut mark repairing behaviors were observed under 70 °C heating in samples containing 25, 28, and 30 mol% NDC. These results indicate the potential of the copolymers for self-healing and highly stretchable shape memory wound dressing material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39. https://doi.org/10.1016/j.progpolymsci.2014.11.002

    Article  CAS  Google Scholar 

  2. Saxon DJ, Luke AM, Sajjad H et al (2020) Next-generation polymers: Isosorbide as a renewable alternative. Prog Polym Sci 101:101196. https://doi.org/10.1016/j.progpolymsci.2019.101196

    Article  CAS  Google Scholar 

  3. Wang Z, Ganewatta MS, Tang C (2020) Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog Polym Sci 101:101197. https://doi.org/10.1016/j.progpolymsci.2019.101197

    Article  CAS  Google Scholar 

  4. Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143. https://doi.org/10.1016/j.progpolymsci.2016.12.009

    Article  CAS  Google Scholar 

  5. Zia KM, Noreen A, Zuber M et al (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int J Biol Macromol 82:1028–1040. https://doi.org/10.1016/j.ijbiomac.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  6. Chinthapalli R, Skoczinski P, Carus M et al (2019) Biobased Building blocks and polymers—global capacities, production and Trends, 2018–2023. Ind Biotechnol 15:237–241. https://doi.org/10.1089/ind.2019.29179.rch

    Article  Google Scholar 

  7. Hatti-Kaul R, Nilsson LJ, Zhang B et al (2020) Designing Biobased Recyclable polymers for Plastics. Trends Biotechnol 38:50–67. https://doi.org/10.1016/j.tibtech.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  8. Larrañaga A, Lizundia E (2019) A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur Polym J 121:109296. https://doi.org/10.1016/j.eurpolymj.2019.109296

    Article  CAS  Google Scholar 

  9. Farmer TJ, Comerford JW, Pellis A, Robert T (2018) Post-polymerization modification of bio-based polymers: maximizing the high functionality of polymers derived from biomass: post-polymerization modification of bio-based polymers. Polym Int 67:775–789. https://doi.org/10.1002/pi.5573

    Article  CAS  Google Scholar 

  10. Rabnawaz M, Wyman I, Auras R, Cheng S (2017) A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chem 19:4737–4753. https://doi.org/10.1039/C7GC02521A

    Article  CAS  Google Scholar 

  11. Luyt AS, Malik SS (2019) Can Biodegradable Plastics Solve Plastic Solid Waste Accumulation? In: plastics to Energy. Elsevier, pp 403–423

  12. Xu J, Guo B (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136

    Article  CAS  PubMed  Google Scholar 

  13. Liu G-C, Zhang W-Q, Wang X-L, Wang Y-Z (2017) Synthesis and performances of poly(butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups. Chin Chem Lett 28:354–357. https://doi.org/10.1016/j.cclet.2016.10.014

    Article  CAS  Google Scholar 

  14. Rudnik E (2013) Compostable Polymer properties and Packaging Applications. Plastic films in Food Packaging. Elsevier, pp 217–248

  15. Hsu K-H, Chen C-W, Wang L-Y et al (2019) Bio-based thermoplastic poly(butylene succinate- co -propylene succinate) copolyesters: effect of glycerol on thermal and mechanical properties. Soft Matter 15:9710–9720. https://doi.org/10.1039/C9SM01958H

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Mao H-I, Wang L-Y, Chen C-W et al (2021) Enhanced crystallization rate of bio-based poly(butylene succinate-co-propylene succinate) copolymers motivated by glycerol. J Polym Res 28:92. https://doi.org/10.1007/s10965-021-02460-x

    Article  CAS  Google Scholar 

  17. Fortunati E, Gigli M, Luzi F et al (2017) Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydr Polym 165:51–60. https://doi.org/10.1016/j.carbpol.2017.02.024

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Guo B-H (2010) Microbial Succinic Acid, its polymer poly(butylene succinate), and applications. In: Chen GG-Q (ed) Plastics from Bacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 347–388

    Chapter  Google Scholar 

  19. Hwang SY, Yoo ES, Im SS (2012) The synthesis of copolymers, blends and composites based on poly(butylene succinate). Polym J 44:1179–1190. https://doi.org/10.1038/pj.2012.157

    Article  CAS  Google Scholar 

  20. Abushammala H, Mao J (2020) Impact of the Surface properties of Cellulose nanocrystals on the Crystallization Kinetics of poly(Butylene Succinate). Crystals 10:196. https://doi.org/10.3390/cryst10030196

    Article  CAS  Google Scholar 

  21. Li H, Chang J, Cao A, Wang J (2005) In vitro evaluation of biodegradable poly(butylene succinate) as a Novel Biomaterial. Macromol Biosci 5:433–440. https://doi.org/10.1002/mabi.200400183

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Feng Z, Feng Q, Cui F (2004) The influence of soft segment length on the properties of poly(butylene terephthalate-co-succinate)-b-poly(ethylene glycol) segmented random copolymers. Eur Polym J 40:1297–1308. https://doi.org/10.1016/j.eurpolymj.2004.02.025

    Article  CAS  Google Scholar 

  23. Pérez-Camargo RA, Fernández-d’Arlas B, Cavallo D et al (2017) Tailoring the structure, morphology, and crystallization of Isodimorphic Poly(butylene succinate- ran -butylene adipate) Random copolymers by changing composition and thermal history. Macromolecules 50:597–608. https://doi.org/10.1021/acs.macromol.6b02457

    Article  ADS  CAS  Google Scholar 

  24. Barletta M, Aversa C, Ayyoob M et al (2022) Poly(butylene succinate) (PBS): materials, processing, and industrial applications. Prog Polym Sci 132:101579. https://doi.org/10.1016/j.progpolymsci.2022.101579

    Article  CAS  Google Scholar 

  25. Vannaladsaysy V, Todo M, Takayama T et al (2009) Effects of lysine triisocyanate on the mode I fracture behavior of polymer blend of poly (l-lactic acid) and poly (butylene succinate-co-l-lactate). J Mater Sci 44:3006–3009. https://doi.org/10.1007/s10853-009-3428-5

    Article  ADS  CAS  Google Scholar 

  26. Peng S, Bu Z, Wu L et al (2017) High molecular weight poly(butylene succinate-co-furandicarboxylate) with 10 mol% of BF unit: synthesis, crystallization-melting behavior and mechanical properties. Eur Polym J 96:248–255. https://doi.org/10.1016/j.eurpolymj.2017.09.008

    Article  CAS  Google Scholar 

  27. Qu D, Sun S, Gao H et al (2019) Biodegradable copolyester poly(butylene- co -isosorbide succinate) as hot-melt adhesives. RSC Adv 9:11476–11483. https://doi.org/10.1039/C9RA01780A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang Y, Liu J, Zhang A, Zhou T (2019) Crystallization behavior of poly(tetramethylene oxide) influenced by the Crystallization Condition of Poly(Butylene Succinate) in their copolymers. J Wuhan Univ Technol-Mater Sci Ed 34:496–506. https://doi.org/10.1007/s11595-019-2079-x

    Article  CAS  Google Scholar 

  29. Vannaladsaysy V, Todo M, Jaafar M et al (2010) Characterization of microstructure and mechanical properties of biodegradable polymer blends of poly(L -lactic acid) and poly(butylene succinate‐ co ‐ε‐caprolactone) with lysine triisocyanate. Polym Eng Sci 50:1485–1491. https://doi.org/10.1002/pen.21683

    Article  CAS  Google Scholar 

  30. Yang Y, Qiu Z (2011) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: effects of comonomer composition and crystallization temperature. CrystEngComm 13:2408. https://doi.org/10.1039/c0ce00598c

    Article  CAS  Google Scholar 

  31. Mincheva R, Delangre A, Raquez J-M et al (2013) Biobased Polyesters with composition-dependent Thermomechanical properties: synthesis and characterization of poly(butylene succinate- co -butylene azelate). Biomacromolecules 14:890–899. https://doi.org/10.1021/bm301965h

    Article  CAS  PubMed  Google Scholar 

  32. Tan B, Bi S, Emery K, Sobkowicz MJ (2017) Bio-based poly(butylene succinate- co -hexamethylene succinate) copolyesters with tunable thermal and mechanical properties. Eur Polym J 86:162–172. https://doi.org/10.1016/j.eurpolymj.2016.11.017

    Article  CAS  Google Scholar 

  33. Zeng J-B, Huang C-L, Jiao L et al (2012) Synthesis and Properties of Biodegradable Poly(butylene succinate-co-diethylene glycol succinate) copolymers. Ind Eng Chem Res 51:12258–12265. https://doi.org/10.1021/ie300133a

    Article  CAS  Google Scholar 

  34. Kim H, Jeon H, Shin G et al (2021) Biodegradable nanocomposite of poly(ester- co -carbonate) and cellulose nanocrystals for tough tear-resistant disposable bags. Green Chem 23:2293–2299. https://doi.org/10.1039/D0GC04072J

    Article  CAS  Google Scholar 

  35. Zhang Y, Li T, Xie Z et al (2017) Synthesis and Properties of Biobased Multiblock Polyesters containing poly(2,5-furandimethylene succinate) and poly(butylene succinate) blocks. Ind Eng Chem Res 56:3937–3946. https://doi.org/10.1021/acs.iecr.7b00516

    Article  CAS  Google Scholar 

  36. Dai X, Qiu Z (2016) Synthesis and properties of novel biodegradable poly(butylene succinate-co-decamethylene succinate) copolyesters from renewable resources. Polym Degrad Stab 134:305–310. https://doi.org/10.1016/j.polymdegradstab.2016.11.004

    Article  CAS  Google Scholar 

  37. Debuissy T, Pollet E, Avérous L (2017) Synthesis and characterization of biobased poly(butylene succinate- ran -butylene adipate). Analysis of the composition-dependent physicochemical properties. Eur Polym J 87:84–98. https://doi.org/10.1016/j.eurpolymj.2016.12.012

    Article  CAS  Google Scholar 

  38. Debuissy T, Pollet E, Avérous L (2016) Enzymatic synthesis of a Bio-based Copolyester from Poly(butylene succinate) and poly((R)-3-hydroxybutyrate): study of reaction parameters on the Transesterification Rate. Biomacromolecules 17:4054–4063. https://doi.org/10.1021/acs.biomac.6b01494

    Article  CAS  PubMed  Google Scholar 

  39. Parcheta P, Datta J (2020) Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s. Polym Test 83:106337. https://doi.org/10.1016/j.polymertesting.2020.106337

    Article  CAS  Google Scholar 

  40. Mochizuki M, Mukai K, Yamada K et al (1997) Structural effects upon enzymatic hydrolysis of poly(butylene succinate- co -ethylene succinate)s. Macromolecules 30:7403–7407. https://doi.org/10.1021/ma970036k

    Article  ADS  CAS  Google Scholar 

  41. Morales-Huerta JC, Ciulik CB, De Ilarduya AM, Muñoz-Guerra S (2017) Fully bio-based aromatic–aliphatic copolyesters: poly(butylene furandicarboxylate-co-succinate)s obtained by ring opening polymerization. Polym Chem 8:748–760. https://doi.org/10.1039/C6PY01879C

    Article  CAS  Google Scholar 

  42. Zakharova E, Lavilla C, Alla A et al (2014) Modification of properties of poly(butylene succinate) by copolymerization with tartaric acid-based monomers. Eur Polym J 61:263–273. https://doi.org/10.1016/j.eurpolymj.2014.09.024

    Article  CAS  Google Scholar 

  43. Kint DPR, Alla A, Deloret E et al (2003) Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate) block copolymers. Polymer 44:1321–1330. https://doi.org/10.1016/S0032-3861(02)00938-2

    Article  CAS  Google Scholar 

  44. Nagata M (2000) Synthesis and enzymatic degradation of poly(tetramethylene succinate) copolymers with terephthalic acid. Polymer 41:4373–4376. https://doi.org/10.1016/S0032-3861(99)00727-2

    Article  CAS  Google Scholar 

  45. Ren L, Wang Y, Ge J et al (2015) Enzymatic synthesis of high-molecular-weight poly(butylene succinate) and its copolymers. Macromol Chem Phys 216:636–640. https://doi.org/10.1002/macp.201400550

    Article  CAS  Google Scholar 

  46. Li F, Xu X, Yu J, Cao A (2007) The morphological effects upon enzymatic degradation of poly(butylene succinate-co-butylene terephthalate)s (PBST). Polym Degrad Stab 92:1053–1060. https://doi.org/10.1016/j.polymdegradstab.2007.02.008

    Article  CAS  Google Scholar 

  47. Luo S, Li F, Yu J (2011) The thermal, mechanical and viscoelastic properties of poly(butylene succinate-co-terephthalate) (PBST) copolyesters with high content of BT units. J Polym Res 18:393–400. https://doi.org/10.1007/s10965-010-9429-x

    Article  CAS  Google Scholar 

  48. Sun Y, Wu L, Bu Z et al (2014) Synthesis and Thermomechanical and Rheological properties of Biodegradable Long-Chain branched poly(butylene succinate-co-butylene terephthalate) copolyesters. Ind Eng Chem Res 53:10380–10386. https://doi.org/10.1021/ie501504b

    Article  CAS  Google Scholar 

  49. Li F, Luo S, Ma C et al (2010) The crystallization and morphology of biodegradable poly(butylene succinate-co-terephthalate) copolyesters with high content of BT units. J Appl Polym Sci n/a-n/a. https://doi.org/10.1002/app.32381

  50. Tsai P-H, Wang C-H, Kan L-S, Chen CW (2012) Studies on the optimal conditions for synthesizing poly(butylene succinate-co-terephthalate) copolyesters with targeted properties: POLY(BUTYLENES SUCCINATE-CO-TEREPHTHALATE) WITH TARGETED PROPERTIES. Asia-Pac J Chem Eng 7:S88–S94. https://doi.org/10.1002/apj.645

    Article  CAS  Google Scholar 

  51. Honda N, Taniguchi I, Miyamoto M, Kimura Y (2003) Reaction mechanism of enzymatic degradation of poly(butylene succinate- co ‐terephthalate) (PBST) with a lipase originated from Pseudomonas cepacia. Macromol Biosci 3:189–197. https://doi.org/10.1002/mabi.200390023

    Article  CAS  Google Scholar 

  52. Zheng C, Zhu G, Shi Y et al (2021) Crystallization, structures and properties of biodegradable poly (butylene succinate-co-butylene terephthalate) with a symmetric composition. Mater Chem Phys 260:124183. https://doi.org/10.1016/j.matchemphys.2020.124183

    Article  CAS  Google Scholar 

  53. Shi Y, Zheng C, Zhu G et al (2020) A heat initiated 3D shape recovery and biodegradable thermoplastic tolerating a strain of 5. React Funct Polym 154:104680. https://doi.org/10.1016/j.reactfunctpolym.2020.104680

    Article  CAS  Google Scholar 

  54. Stewart ME, Cox AJ, Naylor DM (1993) Reactive processing of poly(ethylene 2,6-naphthalene dicarboxylate)/poly(ethylene terephthalate) blends. Polymer 34:4060–4067. https://doi.org/10.1016/0032-3861(93)90667-Y

    Article  CAS  Google Scholar 

  55. Mao H-I, Yang Z-Y, Chen C-W, Rwei S-P (2022) Bio-based poly(hexamethylene 2,5-furandicarboxylate- co -2,6-naphthalate) copolyesters: a study of thermal, mechanical, and gas-barrier properties. Soft Matter 18:7631–7641. https://doi.org/10.1039/D2SM00689H

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Hernández-Rivera MA, De La Mora GG, Likhatchev D et al (2009) Oxygen and carbon dioxide transport through high barrier polyester blends. Polym Eng Sci 49:1635–1641. https://doi.org/10.1002/pen.21391

    Article  CAS  Google Scholar 

  57. Wu L, Mincheva R, Xu Y et al (2012) High Molecular Weight Poly(butylene succinate- co -butylene furandicarboxylate) copolyesters: from Catalyzed Polycondensation reaction to Thermomechanical Properties. Biomacromolecules 13:2973–2981. https://doi.org/10.1021/bm301044f

    Article  CAS  PubMed  Google Scholar 

  58. Wang G, Yu J, Jiang M et al (2020) Bio-based copolyesters poly(butylene 2,6-naphthalate-co-butylene furandicarboxylate) derived from 2,5-furandicarboxylic acid (FDCA): synthesis, characterization, and properties. Polym Test 91:106771. https://doi.org/10.1016/j.polymertesting.2020.106771

    Article  CAS  Google Scholar 

  59. Lillwitz LD (2001) Production of dimethyl-2,6-naphthalenedicarboxylate: precursor to polyethylene naphthalate. Appl Catal Gen 221:337–358. https://doi.org/10.1016/S0926-860X(01)00809-2

    Article  CAS  Google Scholar 

  60. Lee T-H, Liu H, Forrester MJ et al (2022) Next-Generation High-Performance Biobased Naphthalate-modified PET for sustainable food packaging applications. Macromolecules 55:7785–7797. https://doi.org/10.1021/acs.macromol.2c00777

    Article  ADS  CAS  Google Scholar 

  61. Quan L, Liu Z, Zhang Q et al (2022) Synthesis of statistical poly(ethylene terephthalate-co‐2,6‐naphthalate) (co)polymers and study on their properties: thermal and barrier properties. J Appl Polym Sci 139:e53099. https://doi.org/10.1002/app.53099

    Article  CAS  Google Scholar 

  62. Walkowiak K, Irska I, Paszkiewicz S (2022) Synthesis and characterization of poly(hexamethylene 2,6-naphthalate)-block-poly(tetrahydrofuran) copolymers with shape memory effect. Mater Res Bull 155:111954. https://doi.org/10.1016/j.materresbull.2022.111954

    Article  CAS  Google Scholar 

  63. Lu X, Isacsson U, Ekblad J (1999) Phase separation of SBS Polymer Modified Bitumens. J Mater Civ Eng 11:51–57. https://doi.org/10.1061/(ASCE)0899-1561(1999)11

    Article  Google Scholar 

  64. He Y, Mao T, Gu Y et al (2020) A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer. Biofabrication 12:045032. https://doi.org/10.1088/1758-5090/abb295

    Article  PubMed  Google Scholar 

  65. Huang Y, Nguyen N-T (2013) A polymeric cell stretching device for real-time imaging with optical microscopy. Biomed Microdevices 15:1043–1054. https://doi.org/10.1007/s10544-013-9796-2

    Article  CAS  PubMed  Google Scholar 

  66. Dayyoub T, Maksimkin AV, Filippova OV et al (2022) Shape memory polymers as smart materials: a review. Polymers 14:3511. https://doi.org/10.3390/polym14173511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mao H, Chen C, Guo L, Rwei S (2022) Tunable shape memory property polyurethane with high glass transition temperature composed of polycarbonate diols. J Appl Polym Sci 139:e52986. https://doi.org/10.1002/app.52986

    Article  CAS  Google Scholar 

  68. Zhang X, Tan BH, Li Z (2018) Biodegradable polyester shape memory polymers: recent advances in design, material properties and applications. Mater Sci Eng C 92:1061–1074. https://doi.org/10.1016/j.msec.2017.11.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science and Technology Council of Taiwan (NSTC 111-2222-E-027-005), the DMA equipment from the Institute of Polymer Science and Engineering at the National Taiwan University and the Instrumentation Center of National Taiwan Normal University for 600 MHz NMR support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.-W.C.; Data curation, H.-I.M., S.-H.C., J.-C.C., and S.-Y.L.; Formal analysis, C.-W.C., and S.-H.C.; Funding acquisition, C.-W.C.; Investigation, C.-W.C.; Methodology, C.-W.C., H.-I.M., and S.-H.C.; Supervision, C.-W.C.; Writing—original draft, H.-I.M.; Writing—review & editing, Chin-Wen Chen.

Corresponding author

Correspondence to Chin-Wen Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, HI., Chang, SH., Chu, RJ. et al. Highly Stretchable Biobased Poly(butylene succinate)-Based Copolyesters with Shape Memory and Self-Healing Properties. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03242-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03242-4

Keywords

Navigation