Skip to main content
Log in

Efficiently Recyclable Fe-Doped ZnO/Bacterial Cellulose-Based Composite Aerogel for Photocatalytic Degradation of Methylene Blue Under Visible Light

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Excellent photocatalytic performance and recyclability are crucial for the long-term use of the photocatalyst. In this study, 5 mol% Fe doped zinc oxide (ZF5), was freeze-dried with bacterial cellulose (BC)/sodium alginate (SA) solution to fabricate a novel composite aerogel capable of degrading methylene blue (MB) under visible light. Ca2+ crosslinking and hydrophobic modifications were adopted to strengthen the aerogel skeleton and enhance the cycling photocatalytic activity, meanwhile, making the aerogel floatable persistently. The influences of pH, ZF5 dosage, and initial solution concentration on MB degradation were investigated. Benefiting from the synergy between the components and the combined modification, the optimum composite aerogel exhibits photocatalytic efficiency of up to 97.4% at an initial MB concentration of 20 mg/L within an irradiation time of 80 min. In addition, it exhibits a degradation efficiency of 79.7% even after 8 cycles, showing great potential in visible-light-driven degradation of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  2. Vikrant K, Giri BS, Raza N, Roy K, Kim K-H, Rai BN, Singh RS (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol 253:355–367. https://doi.org/10.1016/j.biortech.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  3. Elfeky AS, Salem SS, Elzaref AS, Owda ME, Eladawy HA, Saeed AM, Awad MA, Abou-Zeid RE, Fouda A (2020) Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 230:115711. https://doi.org/10.1016/j.carbpol.2019.115711

    Article  CAS  PubMed  Google Scholar 

  4. Celik S, Duman N, Sayin F, Tunali Akar S, Akar T (2021) Microbial cells immobilized on natural biomatrix as a new potential ecofriendly biosorbent for the biotreatment of reactive dye contamination. J Water Process Eng 39:101731. https://doi.org/10.1016/j.jwpe.2020.101731

    Article  Google Scholar 

  5. Xue Y, Kamali M, Zhang X, Askari N, De Preter C, Appels L, Dewil R (2023) Immobilization of photocatalytic materials for (waste) water treatment using 3D printing technology–advances and challenges. Environ Pollut 316:120549. https://doi.org/10.1016/j.envpol.2022.120549

    Article  CAS  PubMed  Google Scholar 

  6. Tang L, Yu J, Pang Y, Zeng G, Deng Y, Wang J, Ren X, Ye S, Peng B, Feng H (2018) Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem Eng J 336:160–169. https://doi.org/10.1016/j.cej.2017.11.048

    Article  CAS  Google Scholar 

  7. Liu J, Wang H, Li WJ, Xie HX, Li X, Yang LQ, Song SJ (2023) Controllable fabrication of Bi4Ti3O12/C/Bi2S3/MoS2 heterojunction with effective suppression of Bi2S3 assisted by amorphous carbon interlayer for significantly enhanced photocatalysis. J Taiwan Inst Chem Eng 146:104882. https://doi.org/10.1016/j.jtice.2023.104882

    Article  CAS  Google Scholar 

  8. Kim D, Yong K (2021) Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type ii to enhance photocatalytic hydrogen production. Appl Catal B 282:119538. https://doi.org/10.1016/j.apcatb.2020.119538

    Article  CAS  Google Scholar 

  9. Türkyılmaz ŞŞ, Güy N, Özacar M (2017) Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals. J Photochem Photobiol A 341:39–50. https://doi.org/10.1016/j.jphotochem.2017.03.027

    Article  CAS  Google Scholar 

  10. Young SJ, Liu YH, Chien JT (2018) Improving field electron emission properties of ZnO nanosheets with ag nanoparticles adsorbed by photochemical method. ACS Omega 3(7):8135–8140. https://doi.org/10.1021/acsomega.8b01041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma M, Poddar M, Gupta Y, Nigam S, Avasthi DK, Adelung R, Abolhassani R, Fiutowski J, Joshi M, Mishra YK (2020) Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO-ZnO tetrapodal hybrid nanocomposite. Mater Today Chem 17:100336. https://doi.org/10.1016/j.mtchem.2020.100336

    Article  CAS  Google Scholar 

  12. Kouhail M, El Ahmadi Z, Benayada A (2022) Effect of Ag, ca, and Fe on photocatalytic activity of ZnO nanoparticles to remove textile dyes under sunlight irradiation. React Kinet Mech Catal 135(1):169–182. https://doi.org/10.1007/s11144-021-02061-1

    Article  CAS  Google Scholar 

  13. Vasheghani F, Mohammad S, Nikzad M, Ghorbani M (2022) Fabrication of Fe-doped ZnO /nanocellulose nanocomposite as an efficient photocatalyst for degradation of methylene blue under visible light. Cellulose 29(13):7277–7299. https://doi.org/10.1007/s10570-022-04735-y

    Article  CAS  Google Scholar 

  14. Saeed M, Muneer M, Haq A, Akram N (2022) Photocatalysis: an effective tool for photodegradation of dyes-a review. Environ Sci Pollut Res 29(1):293–311. https://doi.org/10.1007/s11356-021-16389-7

    Article  CAS  Google Scholar 

  15. Sekar AD, Muthukumar H, Chandrasekaran NI, Matheswaran M (2018) Photocatalytic degradation of naphthalene using calcined Fe ZnO / PVA nanofibers. Chemosphere 205:610–617. https://doi.org/10.1016/j.chemosphere.2018.04.131

    Article  CAS  PubMed  Google Scholar 

  16. Hasanpour M, Hatami M (2020) Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study. J Mol Liq 309:113094. https://doi.org/10.1016/j.molliq.2020.113094

    Article  CAS  Google Scholar 

  17. Truong HB, Rabani I, Huy BT, Tran NHT, Hur J (2023) Using floating photocatalyst mpg-C3N4/expanded perlite to treat natural organic matter under visible light. Chem Eng J 466:143178. https://doi.org/10.1016/j.cej.2023.143178

    Article  CAS  Google Scholar 

  18. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598. https://doi.org/10.1016/j.carbpol.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  19. Kaushik M, Moores A (2016) Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637. https://doi.org/10.1039/C5GC02500A

    Article  CAS  Google Scholar 

  20. Bergottini VM, Bernhardt D (2023) Bacterial cellulose aerogel enriched in nanofibers obtained from Kombucha Scoby byproduct. Mater Today Commun 35:105975. https://doi.org/10.1016/j.mtcomm.2023.105975

    Article  CAS  Google Scholar 

  21. Ma H, Wang Z, Zhang X, Yao J (2023) Bimetallic MOF@bacterial cellulose derived carbon aerogel for efficient electromagnetic wave absorption. Ceram Int 49(12):20951–20959. https://doi.org/10.1016/j.ceramint.2023.03.228

    Article  CAS  Google Scholar 

  22. Sun B, Zhao J, Wang T, Li YYang X, Tan F, Li Y, Chen C, Sun D (2023) Highly efficient construction of sustainable bacterial cellulose aerogels with boosting pm filter efficiency by tuning functional group. Carbohydr Polym 309:120664. https://doi.org/10.1016/j.carbpol.2023.120664

    Article  CAS  PubMed  Google Scholar 

  23. Pereira ALS, Feitosa JPA, Morais JPS, Rosa M, d F (2020) Bacterial cellulose aerogels: influence of oxidation and silanization on mechanical and absorption properties. Carbohydr Polym 250:116927. https://doi.org/10.1016/j.carbpol.2020.116927

    Article  CAS  PubMed  Google Scholar 

  24. Jiang J, Zhu J, Zhang Q, Zhan X, Chen F (2019) A shape recovery zwitterionic bacterial cellulose aerogel with superior performances for water remediation. Langmuir 35(37):11959–11967. https://doi.org/10.1021/acs.langmuir.8b04180

    Article  CAS  PubMed  Google Scholar 

  25. Štengl V, Popelková D, Vláčil P (2011) TiO2-graphene nanocomposite as high performace photocatalysts. J Phys Chem C 115(51):25209–25218. https://doi.org/10.1021/jp207515z

    Article  CAS  Google Scholar 

  26. Ciciliati MA, Silva MF, Fernandes DM, de Melo MAC, Hechenleitner AAW, Pineda, E A G (2015) Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterizati on. Mater Lett 159:84–86. https://doi.org/10.1016/j.matlet.2015.06.023

    Article  CAS  Google Scholar 

  27. Xiao H, Zhang W, Wei Y, Chen L (2018) Carbon/ZnO nanorods composites templated by tempo-oxidized cellulose and photocatalytic activity for dye degradation. Cellulose 25(3):1809–1819. https://doi.org/10.1007/s10570-018-1651-4

    Article  CAS  Google Scholar 

  28. Kim JH, Park S, Kim H, Kim HJ, Yang YH, Kim YH, Lee SH (2017) Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. Carbohydr Polym 157:137–145. https://doi.org/10.1016/j.carbpol.2016.09.074

    Article  CAS  PubMed  Google Scholar 

  29. Xu P, Song J, Dai Z, Xu Y, Li D, Wu C (2021) Effect of ca. cross-linking Prop Struct lutein-loaded Sodium Alginate Hydrogels Int J Biol Macromol 193:53–63. https://doi.org/10.1016/j.ijbiomac.2021.10.114

    Article  CAS  Google Scholar 

  30. Chen S, Zhou B, Hu W, Zhang W, Yin N, Wang H (2013) Polyol mediated synthesis of ZnO nanoparticles templated by bacterial cellulose. Carbohydr Polym 92(2):1953–1195. https://doi.org/10.1016/j.carbpol.2012.11.059

    Article  CAS  PubMed  Google Scholar 

  31. Doan Thi TU, Nguyen TT, Thi YD, Ta Thi KH, Phan BT, Pham KN (2020) Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv 10(40):23899–23907. https://doi.org/10.1039/D0RA04926C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sohrabi S, Keshavarz Moraveji M, Iranshahi D, Karimi A (2022) Microfluidic assisted low-temperature and speedy synthesis of TiO2/ZnO/GOx with bio/photo active cites for Amoxicillin degradation. Sci Rep 12(1):15488. https://doi.org/10.1038/s41598-022-19406-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang X, Ma J, Ling J, Li N, Wang D, Yue F, Xu S (2018) Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl Surf Sci 435:609–616. https://doi.org/10.1016/j.apsusc.2017.11.123

    Article  CAS  Google Scholar 

  34. Li J, Hu C, Liu B, Liu Z (2023) Dual pathway reduction of Mo4+ and photogenerated electrons restore catalytic sites to enhance heterogeneous peroxymonosulfate activation system. Chem Eng J 452:139246. https://doi.org/10.1016/j.cej.2022.139246

    Article  CAS  Google Scholar 

  35. Shen F, Chen C, Chen W, Liu Q, Chen C, Xiao G, Zhou J (2022) Ultra-light GO@ KGM aerogels for oil–water separation based on CVD modification. ACS Omega 7(15):13354–13361. https://doi.org/10.1021/acsomega.2c01080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang HY, Yu SF, Lau SP, Herng TS, Tanemura M (2009) Ultraviolet laser action in ferromagnetic Zn1-xFexO nanoneedles. Nanoscale Res Lett 5(1):247. https://doi.org/10.1007/s11671-009-9473-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patil SS, Mali MG, Tamboli MS, Patil DR, Kulkarni MV, Yoon H, Kim H, Al-Deyab SS, Yoon SS, Kolekar SS, Kale BB (2016) Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal Today 260:126–134. https://doi.org/10.1016/j.cattod.2015.06.004

    Article  CAS  Google Scholar 

  38. Yang Z, Zhong W, Au C, Du X, Song H, Qi X, Ye X, Xu M, Du Y (2009) Novel photoluminescence properties of magnetic Fe/ZnO composites: self-assembled ZnO nanospikes on Fe nanoparticles fabricated by hydrothermal method. J Phys Chem C 113(51):21269–21273. https://doi.org/10.1021/jp903130t

    Article  CAS  Google Scholar 

  39. Xia C, Hu C, Tian Y, Chen P, Wan B, Xu J (2011) Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays. Solid State Sci 13(2):388–393. https://doi.org/10.1016/j.solidstatesciences.2010.11.041

    Article  CAS  Google Scholar 

  40. Rambu AP, Nica V, Dobromir M (2013) Influence of Fe-doping on the optical and electrical properties of ZnO films. Superlattices Microstruct 59:87–96. https://doi.org/10.1016/j.spmi.2013.03.023

    Article  CAS  Google Scholar 

  41. Choi H, Shin D, Yeo BC, Song T, Han SS, Park N, Kim S (2016) Simultaneously controllable doping sites and the activity of a W-N codoped TiO2 photocatalyst. ACS Catal 6(5):2745–2753. https://doi.org/10.1021/acscatal.6b00104

    Article  CAS  Google Scholar 

  42. Yi L, Yang J, Fang X, Xia Y, Zhao L, Wu H, Guo S (2020) Facile fabrication of wood-inspired aerogel from Chitosan for efficient removal of oil from Water. J Hazard Mater 385:121507. https://doi.org/10.1016/j.jhazmat.2019.121507

    Article  CAS  PubMed  Google Scholar 

  43. Fest A, Tristán F, Perez-Vigueras W, Labrada-Delgado GJ, Meneses-Rodríguez D, Vega-Díaz SM (2023) Metal decorated carbon nanotube aerogels from sodium polyacrylate crosslinking by divalent ions. Carbon Trends 10:100235. https://doi.org/10.1016/j.cartre.2022.100235

    Article  CAS  Google Scholar 

  44. Yan Z, Zhu K, Li X, Wu X (2022) Recyclable bacterial cellulose aerogel for oil and water separation. J Polym Environ 30(7):2774–2784. https://doi.org/10.1007/s10924-021-02369-y

    Article  CAS  Google Scholar 

  45. Liu Y (2023) Functional cellulose aerogel nanocomposites with enhanced adsorption capability and excellent photocatalytic performance. Int J Biol Macromol 231:123393. https://doi.org/10.1016/j.ijbiomac.2023.123393

    Article  CAS  PubMed  Google Scholar 

  46. Nie J, Li C, Jin Z, Hu W, Wang J, Huang T, Wang Y (2019) Fabrication of MCC/Cu2O/Go composite foam with high photocatalytic degradation ability toward methylene blue. Carbohydr Polym 223:115101. https://doi.org/10.1016/j.carbpol.2019.115101

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Ji Z, Lin J, Li P (2017) Preparation and optical and photocatalytic properties of Ce-doped ZnO microstructures by simple solution method. Mater Sci Semicond Process 71:401–408. https://doi.org/10.1016/j.mssp.2017.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Fujian Provincial Nature Science Foundation of China (Grant 2018J01755).

Author information

Authors and Affiliations

Authors

Contributions

Xiangqi Li: Supervision, Review and Funding. Xutao Zhang: Material preparation; Experimental design; Data processing and writing. Weiliang Chen: Material preparation; Methodology, Introduction and Review.

Corresponding author

Correspondence to Xiangqi Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, W. & Li, X. Efficiently Recyclable Fe-Doped ZnO/Bacterial Cellulose-Based Composite Aerogel for Photocatalytic Degradation of Methylene Blue Under Visible Light. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03232-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03232-6

Keywords

Navigation