Skip to main content

Advertisement

Log in

Utilization of Pineapple Peel Waste/ZnO Nanoparticles Reinforcement for Cellulose-Based Nanocomposite Membrane and Its Characteristics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is a natural substance produced by microorganisms and offers numerous benefits. It can be produced by utilizing biomass waste which is abundantly available through fermentation process. This study investigates the utilization of pineapple peel waste for BC synthesis and observes their properties as nanocomposite membranes after the addition of ZnO nanoparticles (ZnO-NPs) as candidate biomaterials for water filtration membranes. The experimental methods were conducted by synthesizing BC using pineapple peel extract using fermentation process. Subsequently, BNC was produced using a high-pressure homogenizer, and ZnO-NPs nanoparticles were added as reinforcement at concentrations of 2.5 wt%, 5.0 wt%, and 7.5wt.%. The mixture was sonicated and subsequently dried in an oven at 60°C for 20 h. BNC/ZnO-NPs membranes were characterized using XRD, FTIR, tensile test, BET, antibacterial test, and SEM analysis. The results indicate that the membrane structure of BNC/ZnO-NPs nanocomposite has peaks at diffraction angles of 14.4°, 15.2°, 16.9°, 22.8°, 31.6°, 34.1° and 36.8°. The addition of ZnO-NPs enhances the crystalline index of BNC by 81.37% at 2.5wt.% ZnO-NPs but reduces the membrane strength due to increasing pore diameter and rougher surface morphology of membrane. Incorporation of ZnO-NPs results in membrane chemical bonding, proved by raising a new peak at wavenumber of 715 cm− 1 and reduces the transmittance of hydroxyl group. This showed antibacterial activity against gram-positive bacteria like S.aureus, but they have no effect on gram-negative bacteria like E. coli. This antibacterial activity is good for resisting biofouling and the membrane can be further developed to meet the requirements for field water filtration applications like desalination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Isco (2021) Sustainable technologies with cellulose-based materials. In: Textile technology. https://www.textiletechnology.net/technology/news/isko-sustainable-technologies-with-cellulose-based-materials-30864. Accessed 22 Jun 2023

  2. Naomi R, Idrus RBH, Fauzi MB (2020) Plant- vs. bacterial-derived cellulose for wound healing: a review. Int J Environ Res Public Health 17:1–25. https://doi.org/10.3390/ijerph17186803

    Article  CAS  Google Scholar 

  3. OEC (2019) Cellulose product trade, exporters and importers. In: The observatory of economic complexity. https://oec.world/en/profile/hs92/cellulose. Accessed 11 Nov 2021

  4. Aziz T, Farid A, Haq F et al (2022) A review on the modification of cellulose and its applications. Polym (Basel) 14:3206. https://doi.org/10.3390/polym14153206

    Article  CAS  Google Scholar 

  5. Ryłko-Polak I, Komala W, Białowiec A (2022) The reuse of biomass and industrial waste in biocomposite construction materials for decreasing natural resource use and mitigating the environmental impact of the construction industry: a review. Materials 15:4078. https://doi.org/10.3390/ma15124078

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  6. Anonimous (2023) Pineapple production by country 2023. In: World Population Review. https://worldpopulationreview.com/country-rankings/pineapple-production-by-country. Accessed 22 Jun 2023

  7. Sarangi PK, Anand Singh T, Joykumar Singh N et al (2022) Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: a review. Bioresour Technol 351:127085. https://doi.org/10.1016/j.biortech.2022.127085

    Article  PubMed  CAS  Google Scholar 

  8. Bhatia SK, Mehariya S, Bhatia RK et al (2021) Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. Sci Total Environ 751:141599. https://doi.org/10.1016/j.scitotenv.2020.141599

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Suryanto H, Kurniawan F, Syukri D et al (2023) Properties of bacterial cellulose acetate nanocomposite with TiO2 nanoparticle and graphene reinforcement. Int J Biol Macromol 235:123705. https://doi.org/10.1016/j.ijbiomac.2023.123705

    Article  PubMed  CAS  Google Scholar 

  10. Katyal M, Singh R, Mahajan R et al (2023) Bacterial cellulose: Nature’s greener tool for industries. Biotechnol Appl Biochem 70:1629–1640. https://doi.org/10.1002/bab.2460

    Article  PubMed  CAS  Google Scholar 

  11. Lee AC, Salleh MM, Ibrahim MF et al (2022) Pineapple peel as alternative substrate for bacterial nanocellulose production. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03169-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Le HV, Dao NT, Bui HT et al (2023) Bacterial cellulose aerogels derived from pineapple peel waste for the adsorption of dyes. ACS Omega 8:33412–33425. https://doi.org/10.1021/acsomega.3c03130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zakaria J, Nazeri M (2012) Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. In: 5th engineering conference,Engineering towards change-empowering green solutions

  14. Suryanto H, Muhajir M, Zakia N et al (2020) Effect of drying methods on the structure of bacterial cellulose from pineapple peel extract. Key Engineering materials. Trans Tech Publ, pp 79–85

  15. Muhajir M, Suryanto H, Larasati A (2020) Effect of alkalization on the bacterial cellulose film structure produced using the pineapple waste. Key Eng Mater 851 KEM:92–96. https://doi.org/10.4028/www.scientific.net/KEM.851.92

    Article  Google Scholar 

  16. Suryanto H, Sutrisno TA, Yanuhar U, Wulandari R (2020) Morphology and structure of bacterial cellulose film after ionic liquid treatment. In: Journal of Physics: Conference Series

  17. Suryanto H, Muhajir M, Sutrisno TA et al (2020) Effect of disintegration process on the properties of bacterial cellulose foam. Key Engineering materials. Trans Tech Publications Ltd, pp 86–91

  18. Suryanto H, Muhajir M, Susilo BD et al (2021) Nanofibrillation of bacterial cellulose using high-pressure homogenization and its films characteristics. J Renew Mater 9:1717–1728. https://doi.org/10.32604/jrm.2021.015312

    Article  CAS  Google Scholar 

  19. Maulana J, Suryanto H, Aminnudin A (2022) Effect of graphene addition on bacterial cellulose-based nanocomposite. J Mech Eng Sci Technol (JMEST) 6:107–112. https://doi.org/10.17977/um016v6i22022p107

    Article  Google Scholar 

  20. Yanuhar U, Suryanto H, Sardjono SA et al (2022) Effect of titanium dioxide nanoparticle on properties of nanocomposite membrane made of bacterial cellulose. J Nat Fibers 19:13914–13927. https://doi.org/10.1080/15440478.2022.2112797

    Article  CAS  Google Scholar 

  21. Huang J, Ma X, Dufresne A, Guang Y (2019) Nanocellulose: from fundamentals to advanced materials. In: Huang J, Dufresne A, Lin N (eds) Nanocellulose: from fundamentals to Advanced materials. Wiley-VCH, Weinheim, Germany, pp 1–486

    Chapter  Google Scholar 

  22. Tripathi BK, Pandey P (2014) Breath figure templating for fabrication of polysulfone microporous membranes with highly ordered monodispersed porosity. J Memb Sci 471:201–210. https://doi.org/10.1016/j.memsci.2014.08.004

    Article  CAS  Google Scholar 

  23. Zheng L, Li S, Luo J, Wang X (2020) Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Front Bioeng Biotechnol 8:593768. https://doi.org/10.3389/fbioe.2020.593768

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pourzare K, Mansourpanah Y, Farhadi S (2016) Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Res J 3:496–513. https://doi.org/10.18331/BRJ2016.3.4.4

    Article  CAS  Google Scholar 

  25. Pessoni L, Lacombe S, Billon L et al (2013) Photoactive, porous honeycomb films prepared from rose bengal-grafted polystyrene. Langmuir 29:10264–10271. https://doi.org/10.1021/la402079z

    Article  PubMed  CAS  Google Scholar 

  26. Luo H, Xiong G, Hu D et al (2013) Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater Chem Phys 143:373–379. https://doi.org/10.1016/j.matchemphys.2013.09.012

    Article  CAS  Google Scholar 

  27. Suryanto H, Maulana J, Susilo BD et al (2023) The effect of adding polyethylene glycol to the structure of bacterial cellulose membrane made from pineapple peel waste. In: AIP Conference Proceedings. AIP Publishing

  28. Di Pasquale G, Graziani S, Kurukunda S et al (2021) Investigation on the role of ionic liquids in the output signal produced by bacterial cellulose-based mechanoelectrical transducers. Sensors 21:1295

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  29. Safarpour M, Khataee A, Vatanpour V (2015) Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J Memb Sci 489:43–54. https://doi.org/10.1016/j.memsci.2015.04.010

    Article  CAS  Google Scholar 

  30. Lv P, Feng Q, Wang Q et al (2016) Preparation of bacterial cellulose/carbon nanotube nanocomposite for biological fuel cell. Fibers Polym 17:1858–1865. https://doi.org/10.1007/s12221-016-6337-7

    Article  CAS  Google Scholar 

  31. Sharma DK, Shukla S, Sharma KK, Kumar V (2022) A review on ZnO: fundamental properties and applications. Mater Today Proc 49:3028–3035. https://doi.org/10.1016/j.matpr.2020.10.238

    Article  CAS  Google Scholar 

  32. Gudkov SV, Burmistrov DE, Serov DA et al (2021) A mini review of antibacterial properties of ZnO nanoparticles. Front Phys 9:641481. https://doi.org/10.3389/fphy.2021.641481

    Article  Google Scholar 

  33. Yu L, Skov AL (2017) ZnO as a cheap and effective filler for high breakdown strength elastomers. RSC Adv 7:45784–45791. https://doi.org/10.1039/C7RA09479E

    Article  ADS  CAS  Google Scholar 

  34. Wahid F, Zhao X-Q, Cui J-X et al (2022) Fabrication of bacterial cellulose with TiO2-ZnO nanocomposites as a multifunctional membrane for water remediation. J Colloid Interface Sci 620:1–13. https://doi.org/10.1016/j.jcis.2022.03.108

    Article  ADS  PubMed  CAS  Google Scholar 

  35. Wasim M, Mushtaq M, Khan SU et al (2020) Development of bacterial cellulose nanocomposites: an overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Ind Text 51:1886S–1915S. https://doi.org/10.1177/1528083720977201

    Article  CAS  Google Scholar 

  36. Zanet V, Vidic J, Auger S et al (2019) Activity evaluation of pure and doped zinc oxide nanoparticles against bacterial pathogens and Saccharomyces cerevisiae. J Appl Microbiol 127:1391–1402. https://doi.org/10.1111/jam.14407

    Article  PubMed  CAS  Google Scholar 

  37. Dincă V, Mocanu A, Isopencu G et al (2020) Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties. Arab J Chem 13:3521–3533. https://doi.org/10.1016/j.arabjc.2018.12.003

    Article  CAS  Google Scholar 

  38. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  PubMed  CAS  Google Scholar 

  39. Rezaei M, Pirsa S, Chavoshizadeh S (2020) Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater 30:2654–2665. https://doi.org/10.1007/s10904-019-01407-6

    Article  CAS  Google Scholar 

  40. Abebe B, Zereffa EA, Tadesse A, Murthy HCA (2020) A review on enhancing the antibacterial activity of ZnO: mechanisms and microscopic investigation. Nanoscale Res Lett 15:190. https://doi.org/10.1186/s11671-020-03418-6

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tiwari V, Mishra N, Gadani K et al (2018) Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Front Microbiol 9:1218. https://doi.org/10.3389/fmicb.2018.01218

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mendes CR, Dilarri G, Forsan CF et al (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12:2658. https://doi.org/10.1038/s41598-022-06657-y

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  44. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. In: Shapiro, S and Losick, R (eds) Additional Perspectives on Cell Biology of Bacteria,. p a000414

  45. Sharma HB, Vanapalli KR, Samal B et al (2021) Circular economy approach in solid waste management system to achieve UN-SDGs: solutions for post-COVID recovery. Sci Total Environ 800:149605. https://doi.org/10.1016/j.scitotenv.2021.149605

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sardjono SA, Suryanto H, Aminnudin, Muhajir M (2019) Crystallinity and morphology of the bacterial nanocellulose membrane extracted from pineapple peel waste using high-pressure homogenizer. AIP Conf Proc 2120. https://doi.org/10.1063/1.5115753

  47. Xiao YT, Chin WL, Abd Hamid SB (2015) Facile Preparation of Highly Crystalline Nanocellulose by Using Ionic Liquid. Adv Mat Res 1087:106–110. https://doi.org/10.4028/www.scientific.net/amr.1087.106

  48. Dilamian M, Montazer M, Masoumi J (2013) Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydr Polym 94:364–371. https://doi.org/10.1016/j.carbpol.2013.01.059

    Article  PubMed  CAS  Google Scholar 

  49. Lødeng R, Bergem H (2018) 7 - stabilisation of pyrolysis oils. In: Rosendahl L (ed) Direct Thermochemical Liquefaction for Energy Applications. Woodhead Publishing, pp 193–247

  50. Muhajir M, Suryanto H, Pradana YRA, Yanuhar U (2022) Effect of homogenization pressure on bacterial cellulose membrane characteristic made from pineapple peel waste. J Mech Eng Sci Technol (JMEST) 6:34–39. https://doi.org/10.17977/um016v6i12022p034

    Article  Google Scholar 

  51. Ren S, Sun X, Lei T, Wu Q (2014) The Effect of Chemical and high-pressure homogenization treatment conditions on the morphology of cellulose nanoparticles. J Nanomater 2014:582913. https://doi.org/10.1155/2014/582913

    Article  CAS  Google Scholar 

  52. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

    Article  CAS  Google Scholar 

  53. Sun C (2005) True density of microcrystalline cellulose. J Pharm Sci 94:2132–2134. https://doi.org/10.1002/jps.20459

    Article  PubMed  CAS  Google Scholar 

  54. Ioelovich M (2021) Preparation, characterization and application of amorphized cellulose—a review. Polym (Basel) 13:4313. https://doi.org/10.3390/polym13244313

    Article  CAS  Google Scholar 

  55. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403. https://doi.org/10.1021/jp0219395

    Article  CAS  Google Scholar 

  56. Solhi L, Guccini V, Heise K et al (2023) Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem Rev 123:1925–2015. https://doi.org/10.1021/acs.chemrev.2c00611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hu Z, Zhai R, Li J et al (2017) Preparation and characterization of nanofibrillated cellulose from bamboo fiber via ultrasonication assisted by repulsive effect. Int J Polym Sci 2017:9850814. https://doi.org/10.1155/2017/9850814

    Article  CAS  Google Scholar 

  58. Kobayashi H, Fukuoka A (2013) Chap. 2 - current catalytic processes for biomass conversion. In: Suib SL (ed) New and Future developments in Catalysis. Elsevier, Amsterdam, pp 29–52

    Chapter  Google Scholar 

  59. Thach-Nguyen R, Lam H-H, Phan H-P, Dang-Bao T (2022) Cellulose nanocrystals isolated from corn leaf: straightforward immobilization of silver nanoparticles as a reduction catalyst. RSC Adv 12:35436–35444. https://doi.org/10.1039/D2RA06689K

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mensah A, Chen Y, Christopher N, Wei Q (2022) Membrane technological pathways and inherent structure of bacterial cellulose composites for drug delivery. Bioengineering 9:3. https://doi.org/10.3390/bioengineering9010003

    Article  CAS  Google Scholar 

  61. Jebel FS, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19. https://doi.org/10.1016/j.carbpol.2016.04.089

    Article  CAS  Google Scholar 

  62. Zheng M, Wang P-L, Zhao S-W et al (2018) Cellulose nanofiber induced self-assembly of zinc oxide nanoparticles: theoretical and experimental study on interfacial interaction. Carbohydr Polym 195:525–533. https://doi.org/10.1016/j.carbpol.2018.05.016

    Article  PubMed  CAS  Google Scholar 

  63. Dubey RS, Singh S (2017) Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys 7:1283–1288. https://doi.org/10.1016/j.rinp.2017.03.014

    Article  ADS  Google Scholar 

  64. Li X, Li H, Wang X et al (2021) Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions. Int J Biol Macromol 183:760–771. https://doi.org/10.1016/j.ijbiomac.2021.04.175

    Article  PubMed  CAS  Google Scholar 

  65. Ruan C, Zhu Y, Zhou X et al (2016) Effect of cellulose crystallinity on bacterial cellulose assembly. Cellulose 23:3417–3427. https://doi.org/10.1007/s10570-016-1065-0

    Article  CAS  Google Scholar 

  66. Daicho K, Kobayashi K, Fujisawa S, Saito T (2020) Crystallinity-independent yet modification-dependent true density of nanocellulose. Biomacromolecules 21:939–945. https://doi.org/10.1021/acs.biomac.9b01584

    Article  PubMed  CAS  Google Scholar 

  67. Lee CM, Gu J, Kafle K et al (2015) Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym 133:270–276. https://doi.org/10.1016/j.carbpol.2015.06.091

    Article  PubMed  CAS  Google Scholar 

  68. Nindiyasari F, Griesshaber E, Zimmermann T et al (2016) Characterization and mechanical properties investigation of the cellulose/gypsum composite. J Compos Mater 50:657–672. https://doi.org/10.1177/0021998315580826

    Article  CAS  Google Scholar 

  69. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J 42:357–361

    Google Scholar 

  70. Yuan E, Zhou M, Nie S, Ren J (2022) Interaction mechanism between ZnO nanoparticles-whey protein and its effect on toxicity in GES-1 cells. J Food Sci 87:2417–2426. https://doi.org/10.1111/1750-3841.16193

    Article  PubMed  CAS  Google Scholar 

  71. Kamal Mohamed SM, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201. https://doi.org/10.1039/C5RA17366C

    Article  ADS  CAS  Google Scholar 

  72. Malekhoseini Z, Rezvani MB, Niakan M et al (2021) Effect of zinc oxide nanoparticles on physical and antimicrobial properties of resin-modified glass ionomer cement. Dent Res J (Isfahan) 18:73. https://doi.org/10.4103/1735-3327.326646

    Article  PubMed  Google Scholar 

  73. Pavličević J, Špírková M, Bera O et al (2014) The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Compos B Eng 60:673–679. https://doi.org/10.1016/j.compositesb.2014.01.016

    Article  CAS  Google Scholar 

  74. Al-Ariki S, Yahya NAA, Al-A’nsi SA et al (2021) Synthesis and comparative study on the structural and optical properties of ZnO doped with ni and ag nanopowders fabricated by sol gel technique. Sci Rep 11:11948. https://doi.org/10.1038/s41598-021-91439-1

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ikram M, Imran M, Hayat S et al (2022) MoS2/cellulose-doped ZnO nanorods for catalytic, antibacterial and molecular docking studies. Nanoscale Adv 4:211–225. https://doi.org/10.1039/d1na00648g

    Article  ADS  CAS  Google Scholar 

  76. Mustapha S, Ndamitso MM, Abdulkareem AS et al (2019) Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv Nat Sci NanoSci NanoTechnol 10:045013. https://doi.org/10.1088/2043-6254/ab52f7

    Article  ADS  Google Scholar 

  77. Nickerson TR, Antonio EN, McNally DP et al (2023) Unlocking the potential of polymeric desalination membranes by understanding molecular-level interactions and transport mechanisms. Chem Sci 14:751–770. https://doi.org/10.1039/D2SC04920A

    Article  PubMed  CAS  Google Scholar 

  78. Szlek DB, Reynolds AM, Hubbe MA (2022) Hydrophobic molecular treatments of cellulose-based or other polysaccharide barrier layers for sustainable food packaging: a review. BioResources 17:3551–3673. https://doi.org/10.15376/biores.17.2.Szlek

    Article  Google Scholar 

  79. Areias AC, Ribeiro C, Sencadas V et al (2012) Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(l-lactide) electrospun mats. Soft Matter 8:5818–5825. https://doi.org/10.1039/C2SM25557J

    Article  ADS  CAS  Google Scholar 

  80. My NTT, Nhi VTY, Thanh BX (2018) Factors affecting membrane distillation process for seawater desalination. J Appl Membrane Sci Technol 22:19–29. https://doi.org/10.11113/amst.v22n1.126

    Article  Google Scholar 

  81. Eljaddi T, Favre E, Roizard D (2023) Design and preparation a new composite hydrophilic/hydrophobic membrane for desalination by pervaporation. Membr (Basel) 13:6. https://doi.org/10.3390/membranes13060599

    Article  CAS  Google Scholar 

  82. Harandi HB, Asadi A (2023) Transport mechanisms in membranes used for desalination applications. In: Xu H, Yang C, Zhang L (eds) Transport perspectives for porous medium applications. Interchopen, Rijeka

    Google Scholar 

  83. Patel AJ, Varilly P, Jamadagni SN et al (2011) Extended surfaces modulate hydrophobic interactions of neighboring solutes. Proc Natl Acad Sci 108:17678–17683. https://doi.org/10.1073/pnas.1110703108

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  84. Onyszko M, Markowska-Szczupak A, Rakoczy R et al (2022) The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products. Sci Rep 12:1321. https://doi.org/10.1038/s41598-022-05458-7

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rozali MLH, Ahmad Z, Isa MIN (2015) Interaction between carboxy methylcellulose and salicylic acid solid biopolymer electrolytes. Adv Mat Res 1107:223–229. https://doi.org/10.4028/www.scientific.net/AMR.1107.223

  86. Yin Z, Li M, Chen Z et al (2022) A superhydrophobic pulp/cellulose nanofiber (CNF) membrane via coating ZnO suspensions for multifunctional applications. Ind Crops Prod 187:115526. https://doi.org/10.1016/j.indcrop.2022.115526

    Article  CAS  Google Scholar 

  87. Tian X, Li Y, Wan S et al (2017) Functional surface coating on cellulosic flexible substrates with improved water-resistant and antimicrobial properties by use of ZnO nanoparticles. J Nanomater 2017:9689035. https://doi.org/10.1155/2017/9689035

  88. Suciyati SW, Manurung P, Sembiring S, Situmeang R (2021) Comparative study of Cladophora sp. cellulose by using FTIR and XRD. J Phys Conf Ser 1751:012075. https://doi.org/10.1088/1742-6596/1751/1/012075

    Article  CAS  Google Scholar 

  89. Nabili A, Fattoum A, Passas R, Elaloui E (2016) Extraction and characterization of cellulose from date palm seed (Phoenix dactylifera L). Cellulose Chem Technol 50:1015–1023

    CAS  Google Scholar 

  90. Atykyan N, Revin V, Shutova V (2020) Raman and FT-IR spectroscopy investigation the cellulose structural differences from bacteria gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express 10:84. https://doi.org/10.1186/s13568-020-01020-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Upadhyaya L, Singh J, Agarwal V et al (2014) In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer. J Polym Res 21:550. https://doi.org/10.1007/s10965-014-0550-0

    Article  CAS  Google Scholar 

  92. Mikhailidi A, Saprykina N, Mokeev M et al (2020) Highly porous hybrid composite hydrogels based on cellulose and 1,10-phenanthrocyanine of zn(ii): synthesis and characterization with waxs, FTIR, 13 C CP/MAS NMR and SEM. Cellulose Chem Technol 54:869–888

    Article  CAS  Google Scholar 

  93. Oyewo OA, Adeniyi A, Sithole BB, Onyango MS (2020) Sawdust-based cellulose nanocrystals incorporated with ZnO nanoparticles as efficient adsorption media in the removal of Methylene Blue dye. ACS Omega 5:18798–18807. https://doi.org/10.1021/acsomega.0c01924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mozaffari A, Mirzapour SM, Rad MS, Ranjbaran M (2023) Cytotoxicity of PLGA-zinc oxide nanocomposite on human gingival fibroblasts. J Adv Periodontology Implant Dentistry 15:27–33. https://doi.org/10.34172/japid.2023.010

    Article  Google Scholar 

  95. Hassan A, Sorour N, El-Baz A, Shetia Y (2016) Biosynthesis of zinc oxide nanorods using bacterial cellulose as a biotemplate. Sci J Oct 6 Univ 3:21–27

    Google Scholar 

  96. Balakrishnan M, John R (2021) Impact of Ni metal ion concentration in TiO2 nanoparticles for enhanced photovoltaic performance of dye sensitized solar cell. J Mater Sci: Mater Electron 32:5295–5308. https://doi.org/10.1007/s10854-020-05100-0

    Article  CAS  Google Scholar 

  97. Sotomayor FJ, Cychosz KA, Thommes M (2018) Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc Mater Surf Res 3:34–50

    Google Scholar 

  98. Istirokhatun T, Yuni U, Andarani P, Susanto H (2018) Do ZnO and Al2O3 nanoparticles improve the anti-bacterial properties of cellulose acetate-chitosan membrane? In: MATEC Web of Conferences 156. EDP Sciences, p 08009

  99. Asiri AM, Petrosino F, Pugliese V et al (2022) Synthesis and characterization of blended cellulose acetate membranes. Polym (Basel) 14:4. https://doi.org/10.3390/polym14010004

    Article  CAS  Google Scholar 

  100. Camacho L, Dumée L, Zhang J et al (2013) Advances in membrane distillation for water desalination and purification applications. Water (Basel) 5:94–196. https://doi.org/10.3390/w5010094

    Article  Google Scholar 

  101. Ali HA, Hameed NJ (2022) The study of the particle size effect on the physical properties of TiO2/cellulose acetate composite films. J Mech Behav Mater 31:150–159. https://doi.org/10.1515/jmbm-2022-0019

    Article  Google Scholar 

  102. Schütz C, Sort J, Bacsik Z et al (2012) Hard and transparent films formed by nanocellulose–TiO2 nanoparticle hybrids. PLoS ONE 7:e45828. https://doi.org/10.1371/journal.pone.0045828

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ayatollahi J, Fotouhi F, Akhondimeybodi Z et al (2022) Determination of antibiotic resistance of E. Coli isolated from urine culture samples. J Med Res 8:162–164

    Article  Google Scholar 

  104. Mwakyoma AA, Kidenya BR, Minja CA et al (2023) Allele distribution and phenotypic resistance to ciprofloxacin and gentamicin among extended-spectrum β-lactamase-producing Escherichia coli isolated from the urine, stool, animals, and environments of patients with presumptive urinary tract infection in Tanzania. Front Antibiot 2:1164016. https://doi.org/10.3389/frabi.2023.1164016

    Article  Google Scholar 

  105. Ghai I (2023) A barrier to entry: examining the bacterial outer membrane and antibiotic resistance. Appl Sci 13:4238. https://doi.org/10.3390/app13074238

    Article  CAS  Google Scholar 

  106. Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. Int J Inorg Mater 2:451–454. https://doi.org/10.1016/S1466-6049(00)00045-3

    Article  Google Scholar 

  107. Selvanathan V, Aminuzzaman M, Tan LX et al (2022) Synthesis, characterization, and preliminary in vitro antibacterial evaluation of ZnO nanoparticles derived from soursop (Annona muricata L.) leaf extract as a green reducing agent. J Mater Res Technol 20:2931–2941. https://doi.org/10.1016/j.jmrt.2022.08.028

    Article  CAS  Google Scholar 

  108. Geilich BM, Webster TJ (2013) Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites. Int J Nanomed 8:1177–1184. https://doi.org/10.2147/IJN.S42010

    Article  CAS  Google Scholar 

  109. Zhao S, Yan W, Shi M et al (2015) Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J Memb Sci 478:105–116. https://doi.org/10.1016/j.memsci.2014.12.050

    Article  CAS  Google Scholar 

  110. Siddique T, Gangadoo S, Quang Pham D et al (2023) Antifouling and antimicrobial study of nanostructured mixed-matrix membranes for Arsenic filtration. Nanomaterials 13:1–16. https://doi.org/10.3390/nano13040738

    Article  CAS  Google Scholar 

  111. Choi W, Shin MG, Yoo CH et al (2021) Desalination membranes with ultralow biofouling via synergistic chemical and topological strategies. J Memb Sci 626:119212. https://doi.org/10.1016/j.memsci.2021.119212

    Article  CAS  Google Scholar 

  112. Ahmed MA, Amin S, Mohamed AA (2023) Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon 9:e14908. https://doi.org/10.1016/j.heliyon.2023.e14908

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Many thanks delivered to DRTPM Dikti and LPPM-UM for funding the grant scheme of Fundamental Research with contract no. 20.6.42/UN32.20.1/LT/2023.

Author information

Authors and Affiliations

Authors

Contributions

UY: write conceptualization, project administration and supervision. HS: material preparation, methods and funding acquisition, writing manuscript; AA: data curation, methodology; HWW: data analysis for FTIR using software. JM: data curation, figure editing. NRC: data curation for antibacterial activity; YSI: writing draft manuscript, and BET and mechanical analysis; JSB: proofread the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Heru Suryanto.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanuhar, U., Suryanto, H., Aminnudin, A. et al. Utilization of Pineapple Peel Waste/ZnO Nanoparticles Reinforcement for Cellulose-Based Nanocomposite Membrane and Its Characteristics. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03205-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03205-9

Keywords

Navigation