Skip to main content

Advertisement

Log in

Antibacterial Polyhydroxyurethane-Gelatin Wound Dressings with In Situ-Generated Silver Nanoparticles or Hyperthermia Induced by Near-Infrared Light Absorption

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyhydroxyurethane (PHU) with free secondary amine groups was synthesized by reacting poly(ethylene glycol)bis-cyclic carbonate with triethylenetetramine. PHU was mixed with varying amounts of gelatin (GE) and crosslinked by reacting them with either poly(ethylene glycol)glycidyl ether (PEGDE) or 1,4-butanediol diglycidyl ether (BDDE). The tensile strength and fluid handling capacity of the monolayer films obtained from different formulations of PHU, GE, PEGDE, or BDDE were evaluated. To further improve the tensile strength of dressings via increasing the crosslinking of the networks, varying amounts of epoxidized graphene oxide (EGO) were utilized as an auxiliary crosslinking agent. The improved tensile strength of up to 140% was recorded for these samples. Additionally, the membranes containing EGO were able to absorb near-infrared light. The resulting hyperthermia effect (increasing temperature up to about 63 within 15 min) could efficiently kill bacteria (100% killing). The free secondary amine groups on the PHU backbone also reduced the silver ions loaded into the dressings, and resulting silver nanoparticles (Ag NPs) showed acceptable antibacterial activity against E.coli (53% killing) and S.aureus (78% killing). It was also found that the antibacterial activity of AgNPs-containing samples was further improved after incorporating EGO due to the knife-killing effect of EGO nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Falanga V, Isseroff RR, Soulika AM et al (2022) Chronic wounds. Nat Rev Dis Prim 8:50. https://doi.org/10.1038/s41572-022-00377-3

    Article  PubMed  Google Scholar 

  2. Metcalf D, Bowler P (2013) Biofilm delays wound healing: a review of the evidence. Burn Trauma 1:5. https://doi.org/10.4103/2321-3868.113329

    Article  Google Scholar 

  3. Simões D, Miguel SP, Ribeiro MP et al (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141. https://doi.org/10.1016/j.ejpb.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  4. Liang Y, Liang Y, Zhang H, Guo B (2022) Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 17:353–384. https://doi.org/10.1016/j.ajps.2022.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gholami H, Yeganeh H, Burujeny SB et al (2018) Vegetable oil based polyurethane containing 1,2,3-triazolium functional groups as antimicrobial wound dressing. J Polym Environ 26:462–473. https://doi.org/10.1007/s10924-017-0964-y

    Article  CAS  Google Scholar 

  6. Shams E, Yeganeh H, Naderi-Manesh H et al (2017) Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations. J Mater Sci Mater Med 28:75. https://doi.org/10.1007/s10856-017-5881-z

    Article  CAS  PubMed  Google Scholar 

  7. Gholami H, Yeganeh H (2020) Vegetable oil-based polyurethanes as antimicrobial wound dressings: in vitro and in vivo evaluation. Biomed Mater 15:045001. https://doi.org/10.1088/1748-605X/ab7387

    Article  CAS  PubMed  Google Scholar 

  8. Homaeigohar S, Boccaccini AR (2020) Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 107:25–49. https://doi.org/10.1016/j.actbio.2020.02.022

    Article  CAS  PubMed  Google Scholar 

  9. Howell-Jones RS, Wilson MJ, Hill KE et al (2005) A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother 55:143–149. https://doi.org/10.1093/jac/dkh513

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  11. Hajipour MJ, Fromm KM, Akbar Ashkarran A et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  12. Franci G, Falanga A, Galdiero S et al (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paladini F, Pollini M (2019) Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials (Basel) 12:2540. https://doi.org/10.3390/ma12162540

    Article  CAS  PubMed  Google Scholar 

  14. Nie P, Zhao Y, Xu H (2023) Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: a review. Ecotoxicol Environ Saf 253:114636. https://doi.org/10.1016/j.ecoenv.2023.114636

    Article  CAS  PubMed  Google Scholar 

  15. Ellison J, Wykoff G, Paul A et al (2014) Efficient dispersion of coated silver nanoparticles in the polymer matrix. Colloids Surf A 447:67–70. https://doi.org/10.1016/j.colsurfa.2014.01.071

    Article  CAS  Google Scholar 

  16. Abdali Z, Yeganeh H, Solouk A et al (2015) Thermoresponsive antimicrobial wound dressings via simultaneous thiol-ene polymerization and in situ generation of silver nanoparticles. RSC Adv 5:66024–66036. https://doi.org/10.1039/C5RA11618J

    Article  CAS  Google Scholar 

  17. Gharibi R, Yeganeh H, Abdali Z (2018) Preparation of antimicrobial wound dressings via thiol-ene photopolymerization reaction. J Mater Sci 53:1581–1595. https://doi.org/10.1007/s10853-017-1622-4

    Article  CAS  Google Scholar 

  18. Rabiee T, Yeganeh H, Gharibi R (2019) Antimicrobial wound dressings with high mechanical conformability prepared through thiol-yne click photopolymerization reaction. Biomed Mater 14:045007. https://doi.org/10.1088/1748-605X/ab16b8

    Article  CAS  PubMed  Google Scholar 

  19. Gharibi R, Yeganeh H, Gholami H, Hassan ZM (2014) Aniline tetramer embedded polyurethane/siloxane membranes and their corresponding nanosilver composites as intelligent wound dressing materials. RSC Adv 4:62046–62060. https://doi.org/10.1039/C4RA11454J

    Article  CAS  Google Scholar 

  20. Kim H, Lee YR, Jeong H et al (2023) Photodynamic and photothermal therapies for bacterial infection treatment. Smart Mol. https://doi.org/10.1002/smo.20220010

    Article  Google Scholar 

  21. Chen Y, Gao Y, Chen Y et al (2020) Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release 328:251–262. https://doi.org/10.1016/j.jconrel.2020.08.055

    Article  CAS  PubMed  Google Scholar 

  22. Xu J-W, Yao K, Xu Z-K (2019) Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale 11:8680–8691. https://doi.org/10.1039/C9NR01833F

    Article  CAS  PubMed  Google Scholar 

  23. Jia X, Ahmad I, Yang R, Wang C (2017) Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms. J Mater Chem B 5:2459–2467. https://doi.org/10.1039/c6tb03084j

    Article  CAS  PubMed  Google Scholar 

  24. Chao Y, Yu S, Zhang H et al (2023) Architecting lignin/poly(vinyl alcohol) hydrogel with carbon nanotubes for photothermal antibacterial therapy. ACS Appl Bio Mater 6:1525–1535. https://doi.org/10.1021/acsabm.2c01061

    Article  CAS  PubMed  Google Scholar 

  25. Xu X, Ding Y, Hadianamrei R et al (2022) Antimicrobial peptide functionalized gold nanorods combining near-infrared photothermal therapy for effective wound healing. Colloids Surf B 220:112887. https://doi.org/10.1016/j.colsurfb.2022.112887

    Article  CAS  Google Scholar 

  26. D’Agostino A, Taglietti A, Desando R et al (2017) Bulk surfaces coated with triangular silver nanoplates: antibacterial action based on silver release and photo-thermal effect. Nanomaterials 7:7. https://doi.org/10.3390/nano7010007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mutalik C, Okoro G, Krisnawati DI et al (2022) Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J Colloid Interface Sci 607:1825–1835. https://doi.org/10.1016/j.jcis.2021.10.019

    Article  CAS  PubMed  Google Scholar 

  28. Yin W, Yu J, Lv F et al (2016) Functionalized nano-MoS 2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10:11000–11011. https://doi.org/10.1021/acsnano.6b05810

    Article  CAS  PubMed  Google Scholar 

  29. Pang Q, Wu K, Jiang Z et al (2022) A polyaniline nanoparticles crosslinked hydrogel with excellent photothermal antibacterial and mechanical properties for wound dressing. Macromol Biosci 22:2100386. https://doi.org/10.1002/mabi.202100386

    Article  CAS  Google Scholar 

  30. Zhao Y, Dai X, Wei X et al (2018) Near-infrared light-activated thermosensitive liposomes as efficient agents for photothermal and antibiotic synergistic therapy of bacterial biofilm. ACS Appl Mater Interfaces 10:14426–14437. https://doi.org/10.1021/acsami.8b01327

    Article  CAS  PubMed  Google Scholar 

  31. Wu M-C, Deokar AR, Liao J-H et al (2013) Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281–1290. https://doi.org/10.1021/nn304782d

    Article  CAS  PubMed  Google Scholar 

  32. Morales-González M, Díaz LE, Dominguez-Paz C, Valero MF (2022) Insights into the design of polyurethane dressings suitable for the stages of skin wound-healing: a systematic review. Polymers (Basel). https://doi.org/10.3390/polym14152990

    Article  PubMed  Google Scholar 

  33. Merenyi S (2014) REACH: Regulation (EC) No 1907/2006: Consolidated version (May 2018). GRIN Verlag

  34. Gomez-Lopez A, Elizalde F, Calvo I, Sardon H (2021) Trends in non-isocyanate polyurethane (NIPU) development. Chem Commun 57:12254–12265. https://doi.org/10.1039/D1CC05009E

    Article  CAS  Google Scholar 

  35. Chelike DK, Gurusamy Thangavelu SA (2023) Catalyzed and non-catalyzed synthetic approaches to obtain isocyanate-free polyurethanes. ChemistrySelect. https://doi.org/10.1002/slct.202300921

    Article  Google Scholar 

  36. Ecochard Y, Caillol S (2020) Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties? Eur Polym J 137:109915. https://doi.org/10.1016/j.eurpolymj.2020.109915

    Article  CAS  Google Scholar 

  37. Ke J, Li X, Wang F et al (2016) The hybrid polyhydroxyurethane materials synthesized by a prepolymerization method from CO2-sourced monomer and epoxy. J CO2 Util 16:474–485. https://doi.org/10.1016/j.jcou.2016.11.001

    Article  CAS  Google Scholar 

  38. Ke J, Li X, Wang F et al (2017) Non-isocyanate polyurethane/epoxy hybrid materials with different and controlled architectures prepared from a CO 2-sourced monomer and epoxy via an environmentally-friendly route. RSC Adv 7:28841–28852

    Article  CAS  Google Scholar 

  39. Ke J, Li X, Jiang S et al (2019) Promising approaches to improve the performances of hybrid non-isocyanate polyurethane. Polym Int 68:651–660. https://doi.org/10.1002/pi.5746

    Article  CAS  Google Scholar 

  40. Tudoroiu E-E, Dinu-Pîrvu C-E, Albu Kaya MG et al (2021) An overview of cellulose derivatives-based dressings for wound-healing management. Pharmaceuticals 14:1215. https://doi.org/10.3390/ph14121215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jayakumar R, Prabaharan M, Sudheesh Kumar PT et al (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  PubMed  Google Scholar 

  42. Barba BJD, Oyama TG, Taguchi M (2021) Simple fabrication of gelatin–polyvinyl alcohol bilayer hydrogel with wound dressing and nonadhesive duality. Polym Adv Technol 32:4406–4414. https://doi.org/10.1002/pat.5442

    Article  CAS  Google Scholar 

  43. Feng P, Luo Y, Ke C et al (2021) Chitosan-based functional materials for skin wound repair: mechanisms and applications. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.650598

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khaloo Kermani P, Zargar Kharazi A (2023) A promising antibacterial wound dressing made of electrospun poly (glycerol sebacate) (PGS)/gelatin with local delivery of ascorbic acid and pantothenic acid. J Polym Environ 31:2504–2518. https://doi.org/10.1007/s10924-022-02715-8

    Article  CAS  Google Scholar 

  45. Ndlovu SP, Ngece K, Alven S, Aderibigbe BA (2021) Gelatin-based hybrid scaffolds: promising wound dressings. Polymers (Basel) 13:2959. https://doi.org/10.3390/polym13172959

    Article  CAS  PubMed  Google Scholar 

  46. Jalilian M, Yeganeh H, Haghighi MN (2008) Synthesis and properties of polyurethane networks derived from new soybean oil-based polyol and a bulky blocked polyisocyanate. Polym Int 57:1385–1394. https://doi.org/10.1002/pi.2485

    Article  CAS  Google Scholar 

  47. Wang S, Li Y, Fan X et al (2015) β-cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants. Front Chem Sci Eng 9:77–83. https://doi.org/10.1007/s11705-014-1450-x

    Article  CAS  Google Scholar 

  48. Cornille A, Blain M, Auvergne R et al (2017) A study of cyclic carbonate aminolysis at room temperature: effect of cyclic carbonate structures and solvents on polyhydroxyurethane synthesis. Polym Chem 8:592–604. https://doi.org/10.1039/C6PY01854H

    Article  CAS  Google Scholar 

  49. Lambeth RH, Rizvi A (2019) Mechanical and adhesive properties of hybrid epoxy-polyhydroxyurethane network polymers. Polymer (Guildf) 183:121881

    Article  CAS  Google Scholar 

  50. Babaahmadi M, Yeganeh H (2023) Poly(vinyl alcohol)-gelatin crosslinked by silane-functionalized guanidyl-hydroxyurethane oligomer as contact-killing non-leaching antibacterial wound dressings. Biomed Mater 18:045017. https://doi.org/10.1088/1748-605X/acd5a0

    Article  Google Scholar 

  51. Pawde SM, Deshmukh K (2008) Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109:3431–3437. https://doi.org/10.1002/app.28454

    Article  CAS  Google Scholar 

  52. Tian H, Zeng H, Zha F et al (2020) Synthesis of graphene oxide-supported β-cyclodextrin adsorbent for removal of p-nitrophenol. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-04865-8

    Article  Google Scholar 

  53. Samadi N, Sabzi M, Babaahmadi M (2018) Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene. Int J Biol Macromol 107:2291–2297. https://doi.org/10.1016/j.ijbiomac.2017.10.104

    Article  CAS  PubMed  Google Scholar 

  54. Babaahmadi M, Sabzi M, Mahdavinia GR, Keramati M (2017) Preparation of amorphous nanocomposites with quick heat triggered shape memory behavior. Polymer (Guildf) 112:26–34. https://doi.org/10.1016/j.polymer.2017.01.074

    Article  CAS  Google Scholar 

  55. Sabzi M, Babaahmadi M, Samadi N et al (2017) Graphene network enabled high speed electrical actuation of shape memory nanocomposite based on poly(vinyl acetate). Polym Int 66:665–671. https://doi.org/10.1002/pi.5303

    Article  CAS  Google Scholar 

  56. Wan Y-J, Tang L-C, Gong L-X et al (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon N Y 69:467–480. https://doi.org/10.1016/j.carbon.2013.12.050

    Article  CAS  Google Scholar 

  57. Salvatore L, Calò E, Bonfrate V et al (2021) Exploring the effects of the crosslink density on the physicochemical properties of collagen-based scaffolds. Polym Test 93:106966. https://doi.org/10.1016/j.polymertesting.2020.106966

    Article  CAS  Google Scholar 

  58. Zhao Y, Sun Z (2018) Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. Int J Food Prop 20:S2822–S2832. https://doi.org/10.1080/10942912.2017.1381111

    Article  CAS  Google Scholar 

  59. Catalina M, Attenburrow GE, Cot J et al (2011) Influence of crosslinkers and crosslinking method on the properties of gelatin films extracted from leather solid waste. J Appl Polym Sci 119:2105–2111. https://doi.org/10.1002/app.32932

    Article  CAS  Google Scholar 

  60. Bao C, Guo Y, Song L et al (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290. https://doi.org/10.1039/c1jm11434d

    Article  CAS  Google Scholar 

  61. Surnova A, Balkaev D, Musin D et al (2019) Fully exfoliated graphene oxide accelerates epoxy resin curing, and results in dramatic improvement of the polymer mechanical properties. Composites B 162:685–691. https://doi.org/10.1016/j.compositesb.2019.01.020

    Article  CAS  Google Scholar 

  62. Tonda-Turo C, Gentile P, Saracino S et al (2011) Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. Int J Biol Macromol 49:700–706. https://doi.org/10.1016/j.ijbiomac.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  63. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems : a review. J Pharm Sci 97:2892–2923. https://doi.org/10.1002/jps

    Article  CAS  PubMed  Google Scholar 

  64. Yari A, Yeganeh H, Bakhshi H (2012) Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing. J Mater Sci Mater Med 23:2187–2202. https://doi.org/10.1007/s10856-012-4683-6

    Article  CAS  PubMed  Google Scholar 

  65. Poursamar SA, Lehner AN, Azami M et al (2016) The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C 63:1–9. https://doi.org/10.1016/j.msec.2016.02.034

    Article  CAS  Google Scholar 

  66. Sabzi M, Jiang L, Liu F et al (2013) Graphene nanoplatelets as poly(lactic acid) modifier: linear rheological behavior and electrical conductivity. J Mater Chem A 1:8253. https://doi.org/10.1039/c3ta11021d

    Article  CAS  Google Scholar 

  67. Gharibi R, Kazemi S, Yeganeh H, Tafakori V (2019) Utilizing dextran to improve hemocompatibility of antimicrobial wound dressings with embedded quaternary ammonium salts. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.03.185

    Article  PubMed  Google Scholar 

  68. Teng X, Liu X, Cui Z et al (2020) Rapid and highly effective bacteria-killing by polydopamine/IR780@MnO2–Ti using near-infrared light. Prog Nat Sci Mater Int 30:677–685. https://doi.org/10.1016/j.pnsc.2020.06.003

    Article  CAS  Google Scholar 

  69. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317. https://doi.org/10.1038/86684

    Article  CAS  PubMed  Google Scholar 

  70. Wang N, Hu B, Chen ML, Wang JH (2015) Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent. Nanotechnology 26:195703. https://doi.org/10.1088/0957-4484/26/19/195703

    Article  CAS  PubMed  Google Scholar 

  71. Li M, Yang X, Ren J et al (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater 24:1722–1728. https://doi.org/10.1002/adma.201104864

    Article  CAS  PubMed  Google Scholar 

  72. Ma L, Wang Y, Wang Y et al (2020) Polyimide nanocomposites with reduced graphene oxide for enhanced thermal conductivity and tensile strength. Mater Res Express 6:125346. https://doi.org/10.1088/2053-1591/ab5ddf

    Article  CAS  Google Scholar 

  73. Lu X, Liang B, Sheng X et al (2020) Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage. Sol Energy Mater Sol Cells 208:110391. https://doi.org/10.1016/j.solmat.2019.110391

    Article  CAS  Google Scholar 

  74. Balandin A, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  75. Li J, Liu X, Zhou Z et al (2019) Lysozyme-assisted photothermal eradication of methicillin-resistant Staphylococcus aureus infection and accelerated tissue repair with natural melanosome nanostructures. ACS Nano 13:11153–11167. https://doi.org/10.1021/acsnano.9b03982

    Article  CAS  PubMed  Google Scholar 

  76. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152. https://doi.org/10.1016/j.matchemphys.2005.04.023

    Article  CAS  Google Scholar 

  77. Pourjavadi A, Soleyman R (2011) Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity. J Nanoparticle Res 13:4647–4658. https://doi.org/10.1007/s11051-011-0428-6

    Article  CAS  Google Scholar 

  78. Mock JJ, Barbic M, Smith DR et al (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755. https://doi.org/10.1063/1.1462610

    Article  CAS  Google Scholar 

  79. Peter Amaladhas T, Usha M, Naveen S (2013) Sunlight induced rapid synthesis and kinetics of silver nanoparticles using leaf extract of Achyranthes aspera L. and their antimicrobial applications. Adv Mater Lett 4:779–785. https://doi.org/10.5185/amlett.2013.2427

    Article  CAS  Google Scholar 

  80. Yin IX, Zhang J, Zhao IS et al (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/IJN.S246764

    Article  CAS  Google Scholar 

  81. Yaragalla S, Bhavitha KB, Athanassiou A (2021) A review on graphene based materials and their antimicrobial properties. Coatings 11:1197. https://doi.org/10.3390/coatings11101197

    Article  CAS  Google Scholar 

  82. Choudhary P, Ramalingam B, Das SK (2023) Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing. Int J Biol Macromol 246:125347. https://doi.org/10.1016/j.ijbiomac.2023.125347

    Article  CAS  PubMed  Google Scholar 

  83. Rezapour-Lactoee A, Yeganeh H, Ostad SN et al (2016) Thermoresponsive polyurethane/siloxane membrane for wound dressing and cell sheet transplantation: In-vitro and in-vivo studies. Mater Sci Eng C 69:804–814. https://doi.org/10.1016/j.msec.2016.07.067

    Article  CAS  Google Scholar 

  84. Dias JR, Baptista-Silva S, Oliveira CMT et al (2017) In situ crosslinked electrospun gelatin nanofibers for skin regeneration. Eur Polym J 95:161–173. https://doi.org/10.1016/j.eurpolymj.2017.08.015

    Article  CAS  Google Scholar 

  85. Martucci JF, Espinosa JP, Ruseckaite RA (2015) Physicochemical properties of films based on bovine gelatin cross-linked with 1,4-butanediol diglycidyl ether. Food Bioprocess Technol 8:1645–1656. https://doi.org/10.1007/s11947-015-1524-x

    Article  CAS  Google Scholar 

  86. Tripodo G, Trapani A, Rosato A et al (2018) Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr Polym 198:124–130. https://doi.org/10.1016/j.carbpol.2018.06.061

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors appreciate the partial support of Iran Polymer and Petrochemical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.B. contributed in the acquisition, analysis, and interpretation of data; drafted the work; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. H.Y. contributed to the conception and design of the work; interpretation of data; drafted the work, revised it critically for important intellectual content; approved the version to be submitted; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Hamid Yeganeh.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 495 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaahmadi, M., Yeganeh, H. Antibacterial Polyhydroxyurethane-Gelatin Wound Dressings with In Situ-Generated Silver Nanoparticles or Hyperthermia Induced by Near-Infrared Light Absorption. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03204-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03204-w

Keywords

Navigation