Skip to main content
Log in

A Bio-Based Polyol with Synergetic Phosphorous and Nitrogenous Effect for Constructing Intrinsic Flame-Retardant Flexible Polyurethane Foam

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Flexible polyurethane foam (FPUF) has a widespread application across aerospace, furniture and vehicles, while its flammability always arouses severe safety concerns. Herein, a novel, bio-based flame retardant, i.e. polyol (PADEA) that contains phosphorus and nitrogen elements, was successfully synthesized by using phytic acid (a bio-organic acid) and diethanolamine as crude materials. Then, PADEA partially substituted the commercial polyether polyols in the foaming process, during which PADEA reacted in situ with isocyanate to construct an inherently flame-retardant FPUF. Due to the purposive designed P-N synergistic molecular structure, PADEA can serve as a highly efficient intumescent flame-retardant (IFR) system. When 40 php (ca. 21.51wt%) PADEA was added into the system, the limiting oxygen index (LOI) of the obtained FPUF reached up to 24.1%, achieving a 22.0% increase compared to that of primitive FPUF without PADEA. Moreover, the addition of PADEA can considerably reduce the total number of melt drips in the UL-94 HB rating test. And the cone calorimeter (CC) results demonstrated a 47.08% reduction in total heat release (THR) was achieved as 40 php PADEA was added. At the end, various characterization methods were carried out, revealing the flame-retardant mechanism of PADEA both in condense and gaseous phase. This work highlights a facile and green strategy for designing functional polyol to address the flame-retardant issues of high-performance FPUF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Bhoyate S, Ionescu M, Kahol PK, Gupta RK (2018) Sustainable flame-retardant polyurethanes using renewable resources. Ind Crops Prod 123:480–488. https://doi.org/10.1016/j.indcrop.2018.07.025

    Article  CAS  Google Scholar 

  2. Chen M-J, Shao Z-B, Wang X-L, Chen L, Wang Y-Z (2012) Ind Eng Chem Res 51(29):9769–9776. https://doi.org/10.1021/ie301004d. Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen–Phosphorus Flame Retardant

    Article  CAS  Google Scholar 

  3. Chen M-J, Xu Y-J, Rao W-H, Huang J-Q, Wang X-L, Chen L, Wang Y-Z (2014) Influence of Valence and structure of phosphorus-containing melamine salts on the decomposition and Fire behaviors of flexible polyurethane foams. Ind Eng Chem Res 53(21):8773–8783. https://doi.org/10.1021/ie500691p

    Article  CAS  Google Scholar 

  4. Pan Y, Liu L, Cai W, Hu Y, Jiang S, Zhao H (2019) Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Appl Clay Sci 168:230–236. https://doi.org/10.1016/j.clay.2018.11.014

    Article  CAS  Google Scholar 

  5. Yang S, Wang S, Du X, Du Z, Cheng X, Wang H (2020) Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123544

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim YS, Jeon ES (2023) Analysis of mechanical and flame-retardant properties of flexible polyurethane foams. J Appl Polym Sci. https://doi.org/10.1002/app.54670

    Article  Google Scholar 

  7. Rao W-H, Zhu Z-M, Wang S-X, Wang T, Tan Y, Liao W, Zhao H-B, Wang Y-Z (2018) A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: self-extinguishing behavior and mechanism. Polym Degrad Stab 153:192–200. https://doi.org/10.1016/j.polymdegradstab.2018.04.029

    Article  CAS  Google Scholar 

  8. Laufer G, Kirkland C, Morgan AB, Grunlan JC (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. ACS Macro Lett 2(5):361–365. https://doi.org/10.1021/mz400105e

    Article  CAS  PubMed  Google Scholar 

  9. Cao K, Wu S-l, Qiu S-l, Li Y, Yao Z (2012) Synthesis ofn-alkoxy hindered amine containing silane as a multifunctional flame retardant synergist and its application in intumescent flame retardant polypropylene. Ind Eng Chem Res. https://doi.org/10.1021/ie3017048

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen L, Song L, Lv P, Jie G, Tai Q, Xing W, Hu Y (2011) A new intumescent flame retardant containing phosphorus and nitrogen: Preparation, thermal properties and application to UV curable coating. Prog Org Coat 70(1):59–66. https://doi.org/10.1016/j.porgcoat.2010.10.002

    Article  CAS  Google Scholar 

  11. Gao F, Tong L, Fang Z (2006) Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the Fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym Degrad Stab 91(6):1295–1299. https://doi.org/10.1016/j.polymdegradstab.2005.08.013

    Article  CAS  Google Scholar 

  12. Wang H, Liu Q, Li H, Zhang H, Yan S (2023) Flame-retardant and smoke-suppressant flexible polyurethane foams based on phosphorus-containing polyester diols and expandable graphite. Polymers. https://doi.org/10.3390/polym15051284

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rao WH, Liao W, Wang H, Zhao HB, Wang YZ (2018) Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J Hazard Mater 360:651–660. https://doi.org/10.1016/j.jhazmat.2018.08.053

    Article  CAS  PubMed  Google Scholar 

  14. Bhoyate S, Ionescu M, Radojcic D, Kahol PK, Chen J, Mishra SR, Gupta RK (2018) Highly flame-retardant bio-based polyurethanes using novel reactive polyols. J Appl Polym Sci. https://doi.org/10.1002/app.46027

    Article  Google Scholar 

  15. Zhou F, Ma C, Zhang K, Yy Chan, Xiao Y, Schartel B, Doring M, Wang B, Hu W, Hu Y (2021) Synthesis of Ethyl (Diethoxymethyl)phosphinate derivatives and their flame retardancy in flexible polyurethane foam: structure-flame retardancy relationships. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2021.109557

    Article  Google Scholar 

  16. Chen M-J, Chen C-R, Tan Y, Huang J-Q, Wang X-L, Chen L, Wang Y-Z (2014) Ind Eng Chem Res 53(3):1160–1171. https://doi.org/10.1021/ie4036753. Inherently Flame-Retardant Flexible Polyurethane Foam with Low Content of Phosphorus-Containing Cross-Linking Agent

    Article  CAS  Google Scholar 

  17. Ding H, Huang K, Li S, Xu L, Xia J, Li M (2017) Synthesis of a novel phosphorus and nitrogen-containing bio-based polyol and its application in flame retardant polyurethane foam. J Anal Appl Pyrol 128:102–113. https://doi.org/10.1016/j.jaap.2017.10.020

    Article  CAS  Google Scholar 

  18. Frigione M, Maffezzoli A, Finocchiaro P, Failla S (2003) Cure kinetics and properties of epoxy resins containing a phosphorous-based flame retardant. Adv Polym Technol 22(4):329–342. https://doi.org/10.1002/adv.10060

    Article  CAS  Google Scholar 

  19. Bai W, Zhang X, Chen Y, Lian Z, Zheng S, Chen X, Lin Y, Jian R (2023) Environmental-friendly biomass-based Janus ink/urushiol modified cotton fabric for efficient solar-driven interfacial evaporation. Chem Eng J. https://doi.org/10.1016/j.cej.2023.146784

    Article  Google Scholar 

  20. Alongi J, Colleoni C, Malucelli G, Rosace G (2012) Hybrid phosphorus-doped silica architectures derived from a multistep sol–gel process for improving thermal stability and flame retardancy of cotton fabrics. Polym Degrad Stab 97(8):1334–1344. https://doi.org/10.1016/j.polymdegradstab.2012.05.030

    Article  CAS  Google Scholar 

  21. Dong C, Lu Z, Zhang F, Zhu P, Wang P, Che Y, Sui S (2015) Combustion behaviors of cotton fabrics treated by a novel nitrogen- and phosphorus-containing polysiloxane flame retardant. J Therm Anal Calorim 123(1):535–544. https://doi.org/10.1007/s10973-015-4914-4

    Article  CAS  Google Scholar 

  22. Xi W, Qian L, Huang Z, Cao Y, Li L (2016) Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym Degrad Stab 130:97–102. https://doi.org/10.1016/j.polymdegradstab.2016.06.003

    Article  CAS  Google Scholar 

  23. Wang Y, Ma L, Yuan J, Zhu Z, Liu X, Li D, He L, Xiao F (2023) Furfural-based P/N/S flame retardant towards high-performance epoxy resins with flame retardancy, toughness, low dielectric properties and UV resistance. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2023.110343

    Article  Google Scholar 

  24. Liu X-D, Zheng X-T, Dong Y-Q, He L-X, Chen F, Bai W-B, Lin Y-C, Jian R-K (2022) A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2022.109840

    Article  Google Scholar 

  25. Tong Y, Wu W, Zhao W, Xing Y, Zhang H, Wang C, Chen TBY, Yuen ACY, Yu B, Cao X, Yi X (2022) Nanohybrid of Co3O4 nanoparticles and polyphosphazene-decorated ultra-thin boron nitride nanosheets for simultaneous enhancement in fire safety and smoke suppression of thermoplastic polyurethane. Polymers. https://doi.org/10.3390/polym14204341

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dong Y-Q, Bai W-B, Zhang W, Lin Y-C, Jian R-K (2023) Bio-based phytic acid@polyurushiol–titanium complex coated cotton fabrics with durable flame retardancy for oil-water separation. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.123782

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang B, Yang S, Liu M, Wen P, Liu X, Tang G, Xu X (2022) Bio-based trivalent phytate: a Novel Strategy for Enhancing Fire performance of rigid polyurethane foam composites. J Renew Mater 10(5):1201–1220. https://doi.org/10.32604/jrm.2022.018047

    Article  CAS  Google Scholar 

  28. Rao W-H, Xu H-X, Xu Y-J, Qi M, Liao W, Xu S, Wang Y-Z (2018) Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem Eng J 343:198–206. https://doi.org/10.1016/j.cej.2018.03.013

    Article  CAS  Google Scholar 

  29. Singh H, Sharma TP, Jain AK (2007) Reactivity of the raw materials and their effects on the structure and properties of rigid polyurethane foams. J Appl Polym Sci 106(2):1014–1023. https://doi.org/10.1002/app.26525

    Article  CAS  Google Scholar 

  30. Li P, Jiang X-C, Song W-M, Zhang L-Y, Xu Y-J, Liu Y, Zhu P (2023) Green organic-inorganic coatings for flexible polyurethane foams: evaluation of the effects on flame retardancy, antibacterial activity, and ideal mechanical properties. J Clean Prod. https://doi.org/10.1016/j.jclepro.2023.137265

    Article  Google Scholar 

  31. Liao H, Duan W, Liu Y, Wang Q, Wen H (2021) Flame retardant and leaking preventable phase change materials for thermal energy storage and thermal regulation. J Energy Storage. https://doi.org/10.1016/j.est.2021.102248

    Article  Google Scholar 

  32. Wu X, Gou T, Zhao Q, Chen L, Wang P (2022) High-efficiency durable flame retardant with ammonium phosphate ester and phosphine oxide groups for cotton cellulose biomacromolecule. Int J Biol Macromol 194:945–953. https://doi.org/10.1016/j.ijbiomac.2021.11.149

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Z, Liu Bingnan Wang S, Yang T, Cui X, Wang H (2015) Preparation of a novel phosphorus- and nitrogen-containing flame retardant and its synergistic effect in the intumescent flame-retarding polypropylene system. Polym Compos 36(9):1606–1619. https://doi.org/10.1002/pc.23069

    Article  CAS  Google Scholar 

  34. Zhang B, Feng Z, Yang Y, Xu X, Chen D, Huang X, Liu C, Liu X, Tang G (2022) Facile synthesis of melamine phytates and its application in rigid polyurethane foam composites targets for improving Fire safety. Plast Rubber Compos 52(3):145–159. https://doi.org/10.1080/14658011.2021.2024647

    Article  CAS  Google Scholar 

  35. Wang P-J, Liao D-J, Hu X-P, Pan N, Li W-X, Wang D-Y, Yao Y (2019) Facile fabrication of biobased P N C-containing nano-layered hybrid: Preparation, growth mechanism and its efficient Fire retardancy in epoxy. Polym Degrad Stab 159:153–162. https://doi.org/10.1016/j.polymdegradstab.2018.11.024

    Article  CAS  Google Scholar 

  36. Sykam K, Försth M, Sas G, Restás Á, Das O (2021) Phytic acid: a bio-based flame retardant for cotton and wool fabrics. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2021.113349

    Article  Google Scholar 

  37. Li P, Liu C, Jiang Q, Tao Y, Xu Y, Liu Y, Zhu P (2022) Halogen-free Coatings combined with the synergistic effect of phytic acid and montmorillonite for fire safety flexible polyurethane foam. Macromol Mater Eng. https://doi.org/10.1002/mame.202100930

    Article  Google Scholar 

  38. Yang Y, Zhang G, Yu F, Liu M, Yang S, Tang G, Xu X, Wang B, Liu X (2021) Flame retardant rigid polyurethane foam composites based on iron tailings and aluminum phosphate: a novel strategy for utilizing industrial solid wastes. Polym Adv Technol 32(12):4826–4839. https://doi.org/10.1002/pat.5474

    Article  CAS  Google Scholar 

  39. Zhang Q, Wang J, Yang S, Cheng J, Ding G, Huo S (2019) Facile construction of one-component intrinsic flame-retardant epoxy resin system with fast curing ability using imidazole-blocked bismaleimide. Compos Part B. https://doi.org/10.1016/j.compositesb.2019.107380

    Article  Google Scholar 

  40. Wang S, Yang F, Sun W, Xu X, Deng Y (2023) Bio-based flame‐retardant rigid polyurethane foam with high content of soybean oil polyols containing phosphorus. J Am Oil Chem Soc 100(7):561–577. https://doi.org/10.1002/aocs.12706

    Article  CAS  Google Scholar 

  41. Cain AA, Nolen CR, Li Y-C, Davis R, Grunlan JC (2013) Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with Fire. Polym Degrad Stab 98(12):2645–2652. https://doi.org/10.1016/j.polymdegradstab.2013.09.028

    Article  CAS  Google Scholar 

  42. Yang S, Zhang B, Liu M, Yang Y, Liu X, Chen D, Wang B, Tang G, Liu X (2021) Fire performance of piperazine phytate modified rigid polyurethane foam composites. Polym Adv Technol 32(11):4531–4546. https://doi.org/10.1002/pat.5454

    Article  CAS  Google Scholar 

  43. Jiang Z, Wang C, Fang S, Ji P, Wang H, Ji C (2018) Durable flame-retardant and antidroplet finishing of polyester fabrics with flexible polysiloxane and phytic acid through layer-by-layer assembly and sol-gel process. J Appl Polym Sci. https://doi.org/10.1002/app.46414

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bhoyate S, Ionescu M, Kahol PK, Chen J, Mishra SR, Gupta RK (2018) Highly flame-retardant polyurethane foam based on reactive phosphorus polyol and limonene-based polyol. J Appl Polym Sci. https://doi.org/10.1002/app.46224

    Article  Google Scholar 

  45. Garrido MA, Font R (2015) Pyrolysis and combustion study of flexible polyurethane foam. J Anal Appl Pyrol 113:202–215. https://doi.org/10.1016/j.jaap.2014.12.017

    Article  CAS  Google Scholar 

  46. Yin Z, Lu J, Hong N, Cheng W, Jia P, Wang H, Hu W, Wang B, Song L, Hu Y (2022) Functionalizing Ti(3)C(2)T(x) for enhancing Fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. J Colloid Interface Sci 607(Pt 2):1300–1312. https://doi.org/10.1016/j.jcis.2021.09.027

    Article  CAS  PubMed  Google Scholar 

  47. Zou J, Duan H, Chen Y, Ji S, Cao J, Ma H (2020) A P/N/S-containing high-efficiency flame retardant endowing epoxy resin with excellent flame retardance, mechanical properties and heat resistance. Compos Part B. https://doi.org/10.1016/j.compositesb.2020.108228

    Article  Google Scholar 

  48. Rao W-H, Hu Z-Y, Xu H-X, Xu Y-J, Qi M, Liao W, Xu S, Wang Y-Z (2017) Flame-retardant flexible polyurethane foams with highly efficient melamine salt. Ind Eng Chem Res 56(25):7112–7119. https://doi.org/10.1021/acs.iecr.7b01335

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (Grant No: 52103080), Yunnan Fundamental Research Projects (Grant No. 202201AT070115, 202101AU070012 and 202201BE070001-031), Yunnan Major Scientific and Technological Projects (grant No. 202202AG050001), and the Analysis and Testing Foundation of Kunming University of Science and Technology (Grant No. 2021T20200023 and 2021T20150083).

Author information

Authors and Affiliations

Authors

Contributions

MY: Investigation, validation, Writing—original draft. CZ: Methodology, investigation, validation, formal analysis. XY: Conceptualization, supervision, writing—review & editing, funding acquisition. CJ: Investigation, visualization. XS: Investigation. MY: Resources, investigation. WF: Visualization, data curation. FD: Resources, investigation. MY: Supervision, funding acquisition. XD: Supervision, project administration, Writing—review & editing, funding acquisition.

Corresponding authors

Correspondence to Yuhui Xie or Delong Xie.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 112.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Y., Cheng, Z., Xie, Y. et al. A Bio-Based Polyol with Synergetic Phosphorous and Nitrogenous Effect for Constructing Intrinsic Flame-Retardant Flexible Polyurethane Foam. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03157-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03157-6

Keywords

Navigation