Skip to main content
Log in

Bio-based Iota-Carrageenan-g-(acrylamide-co-maleic Acid) Smart Graft Hydrogels with Different Crosslinkers and Their Interaction with Uranyl Ions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, novel smart graft hydrogels (SGHs) were prepared by simultaneous grafting/crosslinking of acrylamide and maleic acid onto iota-carrageenan (CR) in the presence of N,N′-methylenebisacrylamide or 1,4-butanediol diacrylate crosslinkers. The SGHs were characterized by FTIR, SEM, TG, DSC analysis and swelling studies. The sizes of the cavities in the SGHs were determined by digital image analysis using micrographs from the SEM. The average cavity diameters in SGHs are around 10 to 12 μm and have a heterogeneous distribution. The adsorption of uranyl ion on SGHs was investigated by spectroscopic, kinetic and equilibrium studies. The accuracy of the pseudo-first and pseudo-second-order kinetic models applied to the swelling and adsorption properties of the hydrogels were evaluated by correlation coefficient (R2), mean bias error (MBE), root mean square error (RMSE), reduced chi-square (χ2) and t-statistic model. The swelling and adsorption kinetics of the hydrogels were found to be consistent with the pseudo-second-order model. The adsorption isotherms of uranyl ion on SGHs were found to be L-type according to the Giles isotherm classification. Freundlich and Langmuir models were applied to these isotherms and adsorption parameters were calculated. From the Langmuir model, the monolayer adsorption capacities of SGH-N and SGH-B were calculated to be 162 and 167 mg g−1, and the maximum fractional occupancy values were calculated to be 99% and 97%, respectively. The pH-responsive swelling and adsorption behavior of the hydrogels was determined and the transition points were determined by applying Saraydın’s model to the plotted curves. It was also observed that the amount of uranyl ions adsorbed increased with the increase of adsorbent mass. In conclusion, this study demonstrates that the synthesized SGHs can be used as an effective adsorbent for the removal of uranyl ions from an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486. https://doi.org/10.1080/03602559.2011.593082

    Article  CAS  Google Scholar 

  3. Elsayed MM (2019) Hydrogel preparation technologies: relevance kinetics, thermodynamics and scaling up aspects. J Polym Environ 27(4):871–891. https://doi.org/10.1007/s10924-019-01376-4

    Article  CAS  Google Scholar 

  4. Işıkver Y, Saraydın D (2021) Smart hydrogels: preparation, characterization, and determination of transition points of crosslinked N-isopropyl acrylamide/acrylamide/carboxylic acids polymers. Gels 7(3):113. https://doi.org/10.3390/gels7030113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477

    CAS  Google Scholar 

  6. Khan M, Qadri Wasim A, Gurav RK (2020) Polysaccharide based superabsorbent polymer: a review. Compliance Eng J 11(9):261–272. https://doi.org/10.2139/ssrn.3904461

    Article  CAS  Google Scholar 

  7. Haag S, Bernards M (2017) Polyampholyte hydrogels in biomedical applications. Gels 3(4):41. https://doi.org/10.3390/gels3040041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rajan R, Kumar N, Zhao D, Dai X, Kawamoto K, Matsumura K (2023) Polyampholyte-based polymer hydrogels for the long‐term storage, protection and delivery of therapeutic proteins. Adv Healthc Mater 12:2203253. https://doi.org/10.1002/adhm.202203253

    Article  CAS  Google Scholar 

  9. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360. https://doi.org/10.1002/adma.200501612

    Article  CAS  Google Scholar 

  10. Cascone S, Lamberti G (2020) Hydrogel-based commercial products for biomedical applications: a review. Int J Pharm 573:118803. https://doi.org/10.1016/j.ijpharm.2019.118803

    Article  CAS  PubMed  Google Scholar 

  11. Luo H, Yao H, Li M, Meng F, Zhao H, Yu C, Liang X, Liu H (2023) Fabrication of novel pectin-based adsorbents for extraction of uranium from simulated seawater: synthesis, performance and mechanistic insight. Sep Purif Technol 311:123283. https://doi.org/10.1016/j.seppur.2023.123283

    Article  CAS  Google Scholar 

  12. Song Y, Li H, Shan T, Yang P, Li S, Liu Z, Liu C, Shen C (2023) MOF-implanted poly (acrylamide-co-acrylic acid)/chitosan organic hydrogel for uranium extraction from seawater. Carbohydr Polym 302:120377. https://doi.org/10.1016/j.carbpol.2022.120377

    Article  CAS  PubMed  Google Scholar 

  13. Akl ZF, Zaki EG, ElSaeed SM (2021) Green Hydrogel-biochar composite for enhanced adsorption of uranium. ACS Omega 6(50):34193–34205. https://doi.org/10.1021/acsomega.1c01559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karmakar M, Mondal H, Mahapatra M, Chattopadhyay PK, Chatterjee S, Singha NR (2019) Pectin-grafted terpolymer superadsorbent via N–H activated strategic protrusion of monomer for removals of cd(II), hg(II), and pb(II). Carbohydr Polym 206:778–791. https://doi.org/10.1016/j.carbpol.2018.11.032

    Article  CAS  PubMed  Google Scholar 

  15. Saraydin D, Karadağ E, Güven O (1995) Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels. Sep Sci Technol 30(17):3287–3298. https://doi.org/10.1080/01496399508013145

    Article  CAS  Google Scholar 

  16. Singha NR, Karmakar M, Mahapatra M, Mondal H, Dutta A, Roy C, Chattopadhyay PK (2017) Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M(II): determination of physicochemical changes in loaded hydrogels. Polym Chem 8(20):3211–3237. https://doi.org/10.1039/c7py00316a

    Article  CAS  Google Scholar 

  17. Sharma S, Sharma G, Kumar A, AlGarni TS, Naushad Mu, ALOthman ZA, Stadler FJ (2022) Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: synthesis, characterization and isotherm analysis. J Hazard Mater 421:126729. https://doi.org/10.1016/j.jhazmat.2021.126729

    Article  CAS  PubMed  Google Scholar 

  18. Khan M, Lo IMC (2016) A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res 106:259–271. https://doi.org/10.1016/j.watres.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  19. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci 152(1–2):2–13. https://doi.org/10.1016/j.cis.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  20. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52. https://doi.org/10.1016/j.jcis.2004.03.048

    Article  CAS  PubMed  Google Scholar 

  21. Chi F, Hu S, Xiong J, Wang X (2013) Adsorption behavior of uranium on polyvinyl alcohol-g-amidoxime: physicochemical properties, kinetic and thermodynamic aspects. Sci China Chem 56(11):1495–1503. https://doi.org/10.1007/s11426-013-5003-9

    Article  CAS  Google Scholar 

  22. Pourjavadi A, Sadeghi M, Hosseinzadeh H (2004) Modified carrageenan. 5. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polym Adv Technol 15(11):645–653. https://doi.org/10.1002/pat.524

    Article  CAS  Google Scholar 

  23. Mirzaei A, Esmkhani M, Zallaghi M, Nezafat Z, Javanshir S (2022) Biomedical and environmental applications of carrageenan-based hydrogels: a review. J Polym Environ 31(5):1679–1705. https://doi.org/10.1007/s10924-022-02726-5

    Article  CAS  Google Scholar 

  24. Shanmuga Priya S, Karthika M, Selvasekarapandian S, Manjuladevi R (2018) Preparation and characterization of polymer electrolyte based on biopolymer I-Carrageenan with magnesium nitrate. Solid State Ion 327:136–149. https://doi.org/10.1016/j.ssi.2018.10.031

    Article  CAS  Google Scholar 

  25. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst 481:424–434. https://doi.org/10.1016/j.jnoncrysol.2017.11.027

    Article  CAS  Google Scholar 

  26. Rezanejade Bardajee G, Pourjavadi A, Sheikh N, Sadegh Amini-Fazl M (2008) Grafting of acrylamide onto kappa-carrageenan via γ-irradiation: optimization and swelling behavior. Radiat Phys Chem 77(2):131–137. https://doi.org/10.1016/j.radphyschem.2007.04.004

    Article  CAS  Google Scholar 

  27. Hosseinzadeh H (2009) Potassium persulfate induced grafting of polyacrylamide onto kappa-carrageenan. Appl Chem 4(10):9–20. https://doi.org/10.22075/chem.2017.545

    Article  Google Scholar 

  28. Meena R, Prasad K, Mehta G, Siddhanta AK (2006) Synthesis of the copolymer hydrogel κ-carrageenan-graft-PAAm: evaluation of its absorbent and adhesive properties. J Appl Polym Sci 102(6):5144–5152. https://doi.org/10.1002/app.24703

    Article  CAS  Google Scholar 

  29. Abd El-Mohdy HL, Abd El-Rehim HA (2008) Radiation synthesis of kappa-carrageenan/acrylamide graft copolymers as superabsorbents and their possible applications. J Polym Res 16(1):63–72. https://doi.org/10.1007/s10965-008-9203-5

    Article  CAS  Google Scholar 

  30. Levy-Ontman O, Yanay C, Paz-Tal O, Wolfson A (2022) Iota-Carrageenan as sustainable bio-adsorbent for the removal of europium ions from aqueous solutions. Mater Today Commun 32:104111. https://doi.org/10.1016/j.mtcomm.2022.104111

    Article  CAS  Google Scholar 

  31. Kantoğlu Ö, Çaykara T, Güven O (2012) Preparation and characterization of polysaccaride interpolymer complexes: I-PVA/ι-carrageenan. J Appl Polym Sci 127(1):500–507. https://doi.org/10.1002/app.37817

    Article  CAS  Google Scholar 

  32. Pourjavadi A, Ghasemzadeh H (2007) Carrageenan-g-poly(acrylamide)/poly(vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: synthesis, characterization, and swelling behavior. Polym Eng Sci 47(9):1388–1395. https://doi.org/10.1002/pen.20829

    Article  CAS  Google Scholar 

  33. Sadeghi M (2012) Synthesis of a biocopolymer carrageenan-g-poly(AAm-co-IA)/ montmorilonite superabsorbent hydrogel composite. Braz J Chem Eng 29(2):295–305. https://doi.org/10.1590/s0104-66322012000200010

    Article  CAS  Google Scholar 

  34. Sadeghi M, Ghasemi N, Kazemi M (2012) Synthesis and swelling behavior of carrageenans-graft-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. World Appl Sci J 16(1):113–118

    CAS  Google Scholar 

  35. Abdellatif MM, Soliman SMA, El-Sayed NH, Abdellatif FHH (2019) Iota-Carrageenan based magnetic aerogels as an efficient adsorbent for heavy metals from aqueous solutions. J Porous Mater 27(1):277–284. https://doi.org/10.1007/s10934-019-00812-z

    Article  Google Scholar 

  36. Azeman NH, Arsad N, Bakar AA (2020) Polysaccharides as the sensing material for metal ion detection-based optical sensor applications. Sensors 20(14):3924. https://doi.org/10.3390/s20143924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ouassel S, Chegrouche S, Nibou D, Melikchi R, Aknoun A, Mellah A (2021) Application of response surface methodology for uranium(VI) adsorption using hydroxyapatite prepared from eggshells waste material: study of influencing factors and mechanism. Water Sci 83(5):1198–1216. https://doi.org/10.2166/wst.2021.022

    Article  CAS  Google Scholar 

  38. Hashmi S, Nadeem S, García-Peñas A, Ahmed R, Zahoor A, Vatankhah‐Varnoosfaderani M, Stadler FJ (2021) Study the effects of supramolecular interaction on diffusion kinetics in hybrid hydrogels of zwitterionic polymers and CNTs. Macromol Chem Phys 223(1):2100348. https://doi.org/10.1002/macp.202100348

    Article  CAS  Google Scholar 

  39. Kaleta A, Górnicki K (2010) Some remarks on evaluation of drying models of red beet particles. Energy Convers Manag 51(12):2967–2978. https://doi.org/10.1016/j.enconman.2010.06.040

    Article  Google Scholar 

  40. Giri TK, Pradhan M, Tripathi DK (2016) Synthesis of graft copolymer of kappa-carrageenan using microwave energy and studies of swelling capacity, flocculation properties, and preliminary acute toxicity. Turk J Chem 40:283–295. https://doi.org/10.3906/kim-1503-16

    Article  CAS  Google Scholar 

  41. Neamtu I, Chiriac AP, Nita LE (2006) Characterization of poly(acrylamide) as a temperature-sensitive hydrogel. J Optoelectron Adv Mater 8(5):1939–1943

    CAS  Google Scholar 

  42. Grenier J, Duval H, Barou F, Lv P, David B, Letourneur D (2019) Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater 94:195–203. https://doi.org/10.1016/j.actbio.2019.05.070

    Article  CAS  PubMed  Google Scholar 

  43. Foudazi R, Zowada R, Manas-Zloczower I, Feke DL (2023) Porous hydrogels: present challenges and Future opportunities. Langmuir 39(6):2092–2111. https://doi.org/10.1021/acs.langmuir.2c02253

    Article  CAS  PubMed  Google Scholar 

  44. Sauerwein M, Steeb H (2020) Modeling of dynamic hydrogel swelling within the pore space of a porous medium. Int J Eng Sci 155:103353. https://doi.org/10.1016/j.ijengsci.2020.103353

    Article  CAS  Google Scholar 

  45. Ünver Saraydin S, Saraydin D, Şahin İnan ZD (2020) A study of digital image analysis on the acrylamide derivative monomers induced apoptosis in rat cerebrum. Microsc Res Tech 83(4):436–445. https://doi.org/10.1002/jemt.23431

    Article  CAS  PubMed  Google Scholar 

  46. Mills M, Bonetti J, Brettell T, Quarino L (2017) Differentiation of human hair by colour and diameter using light microscopy digital imaging and statistical analysis. J Microsc 270(1):27–40. https://doi.org/10.1111/jmi.12646

    Article  PubMed  Google Scholar 

  47. Varghese JS, Chellappa N, Fathima NN (2014) Gelatin–carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloids Surf B: Biointerfaces 113:346–351. https://doi.org/10.1016/j.colsurfb.2013.08.049

    Article  CAS  PubMed  Google Scholar 

  48. Mays TJ (2007) A new classification of pore sizes. Charact Porous Solids VII - Proc 7th Int Symp Charact Porous Solids (COPS-VII) Aix-En-Provence France 26–28 May 2005. Doi: 10.1016/s0167-2991(07)80009-7https://doi.org/10.1016/s0167-2991(07)80009-7

  49. Saraydın D, Işıkver Y (2022) Calculations of the magnitude of responsivities in pH- temperature- and ion- responsive hydrogels. Mater Today Commun 31:103253. https://doi.org/10.1016/j.mtcomm.2022.103253

    Article  CAS  Google Scholar 

  50. Atta AM, Wahab ZHAE, Shafey ZAE, Zidan WI, Akl ZF (2010) Uranyl ions uptake from aqueous solutions using crosslinked ionic copolymers based on 2-acrylamido-2-methylpropane sulfonic acid copolymers. J Dispers Sci Technol 31(12):1601–1610. https://doi.org/10.1080/01932690903296977

    Article  CAS  Google Scholar 

  51. Işıkver Y (2017) Synthesis of anionic hydrogels for uranyl ion adsorption. CSJ 38(4):770–780. https://doi.org/10.17776/csj.345147

    Article  Google Scholar 

  52. Sahoo TR, Prelot B (2020) Adsorption processes for the removal of contaminants from wastewater. Nanomater Detect Remov Wastewater Pollut. https://doi.org/10.1016/b978-0-12-818489-9.00007-4

    Article  Google Scholar 

  53. Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc  https://doi.org/10.1039/jr9600003973

    Article  Google Scholar 

  54. Tan J, Xie S, Wang G, Yu CW, Zeng T, Cai P, Huang H (2020) Fabrication and optimization of the Thermo-Sensitive Hydrogel Carboxymethyl Cellulose/Poly(N-isopropylacrylamide-co-acrylic acid) for U(VI) removal from aqueous solution. Polymers 12(1):151. https://doi.org/10.3390/polym12010151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hazer O, Kartal Ş (2010) Use of amidoximated hydrogel for removal and recovery of U(VI) ion from water samples. Talanta 82(5):1974–1979. https://doi.org/10.1016/j.talanta.2010.08.023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

YI: Conceptualization, methodology, software, formal analysis, review, resources, data curation, writing-original drafting, writing-analysis and editing, visualization, supervision, project management. DS: Conceptualization, methodology, software, formal analysis, sources, writing-original drafting, writing-analysis and editing, visualization. CNS: Analysis, data editing. All authors read and approved the published version of the article.

Corresponding author

Correspondence to Yasemin Işıkver.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işıkver, Y., Saraydın, D. & Sarıkaya, Ç.N. Bio-based Iota-Carrageenan-g-(acrylamide-co-maleic Acid) Smart Graft Hydrogels with Different Crosslinkers and Their Interaction with Uranyl Ions. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03087-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03087-3

Keywords

Navigation