Skip to main content
Log in

From Patauá Oil to Sustainable Polymers: Investigation of Epoxy/Anhydride Crosslink in Different Proportions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The synthesis of new materials from vegetable oils has increased due to technological applications and low environmental impact. Oil obtained from the patauá fruit (Oenocarpus bataua) is rich in linoleic and oleic fatty acids that can be modified by their double bonds to obtain green monomers. Thus, patauá oil can be reacted with an intercrossing agent to obtain a thermosetting polymer. This work focused on developing biomass-derived materials with hardened mechanical properties based on epoxidized patauá oil and benzophenone dianhydride. The global approach used for the crosslinking process started with the choice of crosslinker and ammonium salts as catalysts. Furthermore, epoxide-dianhydride copolymerization was investigated at different molar ratios (of anhydride and catalyst) to adjust the parameters that led to better conversions and properties. The final material exhibited conversions > 97% using only 5% catalyst and 2 h of curing at 120 °C, with the degradation process starting at 240 °C and glass transition temperature (Tg) at -1.5 °C. The produced polymer is luminescent and has low water absorption, suggesting its application in electronic devices and insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. OECD (2022) Global Plastics Outlook: policy scenarios to 2060. OECD. https://doi.org/10.1787/aa1edf33-en

  2. Falco G, Sbirrazzuoli N, Mija A (2019) Biomass derived epoxy systems: from reactivity to final properties. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2019.100683

    Article  Google Scholar 

  3. Vazquez-Martel C, Becker L, Fiedler B et al (2021) Vegetable oils as sustainable inks for Additive Manufacturing: a comparative study. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.1c06784

    Article  Google Scholar 

  4. Marriam F, Irshad A, Umer I et al (2023) Vegetable oils as bio-based precursors for epoxies. Sustain Chem Pharm. https://doi.org/10.1016/j.scp.2022.100935

    Article  Google Scholar 

  5. Ghosal K, Bhattacharjee U, Sarkar K (2020) Facile green synthesis of bioresorbable polyester from soybean oil and recycled plastic waste for osteochondral tissue regeneration. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2019.109338

    Article  Google Scholar 

  6. Dave R, Patel R, Patel M (2023) Hybrid lipid-polymer nanoplatform: a systematic review for targeted colorectal cancer therapy. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2023.111877

    Article  Google Scholar 

  7. Di Mauro C, Malburet S, Graillot A, Mija A (2020) Recyclable, repairable, and Reshapable (3R) thermoset materials with shape memory Properties from Bio-Based Epoxidized Vegetable oils. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.0c01199

    Article  PubMed  Google Scholar 

  8. Mushtaq M, Akram S, Syeda Mariam Hasany (2019) Seje (Oenocarpus/Jessenia bataua) Palm Oil. In: Ramadan MF (ed) Fruit oils: Chemistry and Functionality. Springer, Cham., pp 883–898. https://doi.org/10.1007/978-3-030-12473-1_49.

    Chapter  Google Scholar 

  9. Oliveira MSP, Oliveira NP, Domingues AFN (2022) Espécies Alimentícias Nativas da Região Norte: Oenocarpus bataua (Patauá). In: Coradin L, Camillo J, Vieira ICG (eds) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região norte. Ministério do Meio Ambiente, Brasília, DF, pp 379–393. https://www.gov.br/mma/pt-br/assuntos/biodiversidade/manejo-euso-%20sustentavel/flora (accessed June 2, 2023).

    Google Scholar 

  10. Santos OV, Gonçalves BS, Macêdo C da S, et al (2020) Evaluation of quality parameters and chromatographic, spectroscopic, and thermogravimetric profile of Patauá oil (Oenocarpus bataua). Food Sci Technol. https://doi.org/10.1590/fst.01619

  11. Afinjuomo F, Barclay TG, Song Y et al (2019) Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2018.10.014

    Article  Google Scholar 

  12. Anusic A, Resch-Fauster K, Mahendran AR et al (2019) Anhydride Cured Bio‐Based Epoxy Resin: Effect of moisture on Thermal and Mechanical Properties. Macromol Mater Eng. https://doi.org/10.1002/mame.201900031

    Article  Google Scholar 

  13. Wijayapala R, Mishra S, Elmore B et al (2019) Synthesis and characterization of crosslinked polymers from cottonseed oil. J Appl Polym Sci. https://doi.org/10.1002/app.47655

    Article  Google Scholar 

  14. Pin J-M, Sbirrazzuoli N, Mija A (2015) From Epoxidized Linseed Oil to Bioresin: an overall Approach of Epoxy/Anhydride Cross-Linking. Chemsuschem. https://doi.org/10.1002/cssc.201403262

    Article  PubMed  Google Scholar 

  15. Yan Z, Ma Z, Deng J, Luo G (2021) Mechanism and kinetics of epoxide ring-opening with carboxylic acids catalyzed by the corresponding carboxylates. Chem Eng Sci. https://doi.org/10.1016/j.ces.2021.116746

    Article  Google Scholar 

  16. Yan Z, Deng J, Chen Y, Luo G (2020) Preparation of 2,3-Epoxypropyl neodecanoate: process optimization and mechanism discussion. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.0c02906

    Article  Google Scholar 

  17. Banik BK, Banerjee B, Kaur G et al (2020) Tetrabutylammonium Bromide (TBAB) Catalyzed synthesis of Bioactive Heterocycles. Molecules. https://doi.org/10.3390/molecules25245918

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fogassy G, Pinel C, Gelbard G (2009) Solvent-free ring opening reaction of epoxides using quaternary ammonium salts as catalyst. Catal Commun. https://doi.org/10.1016/j.catcom.2008.10.039

    Article  Google Scholar 

  19. Oleo de Patauá (2023) In: Mundo Dos Óleos. https://www.mundodosoleos.com/products/oleo-de-patua?variant=31299859447926. Accessed 3

  20. Magri R, Gaglieri C, Alarcon RT et al (2021) Epoxidation reaction in promising brazilian biomass: decreased time and catalyst loading to produce renewable monomers. J Polym Res. https://doi.org/10.1007/s10965-021-02706-8

    Article  Google Scholar 

  21. ASTM D554-15 (2019) Standard Test Method for Determination of the Iodine Value of Fats and Oils

  22. AOCS Cd 8–53 (2003) Peroxide value. Acetic Acid-Chloroform Method

  23. AOCS 3D-63 (2009) Acid Value Official Method

  24. ASTM D1652-11 (2019) Standard Test Method for Epoxy Content of Epoxy Resins

  25. Gaglieri C, Alarcon RT, Magri R et al (2022) Development of renewable thermosetting polymers based on grape seed oil derivatives. J Appl Polym Sci. https://doi.org/10.1002/app.52990

    Article  Google Scholar 

  26. Alarcon RT, Gaglieri C, Lamb KJ et al (2021) A new acrylated monomer from macaw vegetable oil that polymerizes without external photoinitiators. J Polym Res. https://doi.org/10.1007/s10965-021-02787-5

    Article  Google Scholar 

  27. Gaglieri C, Alarcon R, de Moura A et al (2021) Green and efficient modification of grape seed oil to synthesize renewable monomers. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20210104

    Article  Google Scholar 

  28. Guillén MD, Ruiz A (2003) 1H nuclear magnetic resonance as a fast tool for determining the composition of acyl chains in acylglycerol mixtures. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.200300799

    Article  Google Scholar 

  29. Alarcon RT, Gaglieri C, Lamb KJ et al (2020) Spectroscopic characterization and thermal behavior of baru nut and macaw palm vegetable oils and their epoxidized derivatives. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112585

    Article  Google Scholar 

  30. de Oliveira P, Mansur H, Mansur A et al (2019) Apatite flotation using pataua palm tree oil as collector. J Mater Res Tech. https://doi.org/10.1016/j.jmrt.2019.08.005

    Article  Google Scholar 

  31. Hernandez PBN, Fregapane G, Moya MDS (2009) Bioactive Compounds, Volatiles and antioxidant activity of Virgin Seje oils (Jessenia Bataua) from the Amazonas. J Food Lipids. https://doi.org/10.1111/j.1745-4522.2009.01171.x

    Article  Google Scholar 

  32. Montúfar R, Laffargue A, Pintaud J-C et al (2010) Oenocarpus bataua Mart. (Arecaceae): rediscovering a source of high oleic vegetable oil from Amazonia. J Am Oil Chem Soc. https://doi.org/10.1007/s11746-009-1490-4

    Article  Google Scholar 

  33. Magri R, Gaglieri C, Alarcon RT et al (2023) Eco-friendly polymers based on Baru vegetable oil and fumaric acid using photopolymerization. J Polym Res. https://doi.org/10.1007/s10965-023-03626-5

    Article  Google Scholar 

  34. Gaglieri C, de Moura A, Alarcon RT et al (2022) Thermal behavior of some cyclic anhydrides: an important characterization for synthesis in the polymer field. J Therm Anal Cal. https://doi.org/10.1007/s10973-022-11213-x

    Article  Google Scholar 

  35. Steinmann B (1990) Investigations on the curing of epoxides with phthalic anhydride. J Appl Polym Sci. https://doi.org/10.1002/app.1990.070390916

    Article  Google Scholar 

  36. Nishikubo T (1997) Chemical modification of polymers via phase transfer catalysis. In: Sasson Y, Neumann R (eds) Handbook of phase transfer catalysis. Springer Netherlands, Dordrecht, pp 480–509. https://doi.org/10.1007/978-94-009-0023-3.

    Chapter  Google Scholar 

  37. Wang L, Zhang G, Kodama K et al (2016) An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO2 into cyclic carbonates under mild conditions. Green Chem. https://doi.org/10.1039/c5gc02697k

    Article  Google Scholar 

  38. Nishikubo T, Saita S (1987) New thermo-crosslinking reactions of copolymers of phenyl methacrylates by use of polyfunctional epoxy compounds. Macromol Chem Phys. https://doi.org/10.1002/macp.1987.021880414

    Article  Google Scholar 

  39. Nishikubo T, Tanaka K (1987) A novel reaction of epoxy resins with polyfunctional active esters. J Appl Polym Sci. https://doi.org/10.1002/app.1987.070330816

    Article  Google Scholar 

  40. Rubab L, Anum A, Al-Hussain SA et al (2022) Green Chemistry in Organic synthesis: recent update on Green Catalytic Approaches in Synthesis of 1,2,4-Thiadiazoles. Catalysts. https://doi.org/10.3390/catal12111329

    Article  Google Scholar 

  41. de Moura A, Gaglieri C, Alarcon RT et al (2017) Non-isothermal kinetic study of andiroba and babassu oils. Braz J Therm Anal. https://doi.org/10.18362/bjta.v6.i4.22

    Article  Google Scholar 

  42. Chambre DR, Tociu M, Stanescu MD et al (2019) Influence of composition on the thermal behavior of oils extracted from the seeds of some romanian grapes. J Sci Food Agric. https://doi.org/10.1002/jsfa.9909

    Article  PubMed  Google Scholar 

  43. Santos JCO, Santos IMG, Souza AG et al (2002) Thermal Stability and Kinetic Study on Thermal decomposition of commercial edible oils by Thermogravimetry. J Food Sci. https://doi.org/10.1111/j.1365-2621.2002.tb10296.x

    Article  Google Scholar 

  44. Herzberger J, Frey H (2015) Epicyanohydrin: polymerization by Monomer Activation gives Access to Nitrile-, Amino-, and carboxyl-functional poly(ethylene glycol). Macromolecules. https://doi.org/10.1021/acs.macromol.5b02178

    Article  Google Scholar 

  45. Accu Dyne Test™ (2019) Critical Surface Tension and Contact Angle with Water for Various Polymers. In: Accudynetest.com. https://www.accudynetest.com/polytable_03.html?sortby=contact_angle. Accessed 12 May 2023

  46. Sastri VR (2022) Commodity thermoplastics: polyvinyl chloride, Polyolefins, Cycloolefins and Polystyrene. Plastics in Medical Devices. Elsevier Inc, pp 113–166. https://doi.org/10.1016/b978-0-8155-2027-6.10006-6.

Download references

Acknowledgements

The authors wish to thank Prof. Dr. Éder Tadeu Gomes Cavalheiro, who allowed the use of his laboratory and equipment to obtain the MIR spectra and DMA curves. We also thank Prof. Dr. Andrea S.S. de Camargo (FAPESP N. 2013/07793-6 (CeRTEV – Center for Research, Technology, and Education in Vitreous Materials/IFSC-USP). This work was supported by CAPES (grants: 024/2012 Pro-equipment. and 011/2009. and 88887.667024/2022-00), the São Paulo Research Foundation (FAPESP grants: 2021/02152-9, 2021/14879-0, and 2022/03489-0) and CNPq (grants 303247/2021-5 and 150233/2022-1).

Author information

Authors and Affiliations

Authors

Contributions

Raquel Magri: methodology, conceptualization, data curation, validation, formal analysis, investigation, writing – original draft; writing – review & editing. Caroline Gaglieri: conceptualization, validation, formal analysis, investigation, writing – original draft; writing – review & editing. Rafael Turra Alarcon: formal analysis, investigation, writing – original draft. Gabriel Iago dos Santos: formal analysis, writing – review & editing. Gilbert Bannach: conceptualization, funding acquisition, project administration, resources, supervision, writing – review & editing.

Corresponding author

Correspondence to Gilbert Bannach.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magri, R., Gaglieri, C., Alarcon, R.T. et al. From Patauá Oil to Sustainable Polymers: Investigation of Epoxy/Anhydride Crosslink in Different Proportions. J Polym Environ 32, 1453–1468 (2024). https://doi.org/10.1007/s10924-023-03061-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03061-z

Keywords

Navigation