Skip to main content
Log in

Conversion of Waste Thermocol into Effective Adsorbent by Chemical Modification: Removal of Malachite Green from Aqueous Media

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Expanded polystyrene (EPS) foam (thermocol waste) is produced at a rate of several million tons annually and poses serious environmental challenges due to its widespread use and lack of biodegradability. The present research is to design an effective Malachite Green (MG) dye adsorbent, RBT (Recycled polystyrene (RPS)—Benzophenone-3,3′,4′,4′-Tetracarboxylic dianhydride (BPTCDA)) by the chemical modification of RPS with BPTCDA via two-step reactions (namely the Friedel–Crafts followed by amidation reactions). The adsorbent’s characteristics were studied using the Scanning Electron Microscope (SEM), X-Ray diffraction analysis (XRD), and Fourier-transform infrared spectroscopy (FTIR) techniques. Solution pH, contact duration, initial dye concentration, adsorbent dose, and temperature of the adsorption process were individually optimized. The adsorption is well matched (R2 > 0.955) with pseudo second-order kinetics, and Freundlich isotherm was identified as most fitting with research findings. Thermodynamic analysis suggests that the adsorption is spontaneous and endothermic. The probable mechanism behind adsorption was predicted between adsorbent and adsorbate through FT-IR analysis. Finally, MG adsorbed RBT, was converted into 3D printing filaments by the extrusion process. When MG leaching of 3D filaments was evaluated, there was no evidence of MG leaching, which could imply that this approach is an environmentally benign way to remove toxic pollutants as well as reduce landfill polymer waste. Based on the adsorption experiment results, RBT is suitable for the adsorption of MG dye from a water-based medium; also the final product was converted into value-added products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Prasittisopin L, Termkhajornkit P, Kim YH (2022) Review of concrete with expanded polystyrene (EPS): performance and environmental aspects. J Clean Product 28:132919. https://doi.org/10.1016/j.jclepro.2022.132919

    Article  CAS  Google Scholar 

  2. Mumbach GD, Bolzan A, Machado RA (2020) A closed-loop process design for recycling expanded polystyrene waste by dissolution and polymerization. Polymer 209:122940. https://doi.org/10.1016/j.polymer.2020.122940

    Article  CAS  Google Scholar 

  3. Petrella A, Di Mundo R, Notarnicola M (2020) Recycled expanded polystyrene as lightweight aggregate for environmentally sustainable cement conglomerates. Materials 13(4):988. https://doi.org/10.3390/ma13040988

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uttaravalli AN, Dinda S, Gidla BR (2020) Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: a review. Process Saf Environ Prot 137:140–148. https://doi.org/10.1016/j.psep.2020.02.023

    Article  CAS  Google Scholar 

  5. Expanded Polystyrene Market Size, Share &Trends Analysis Report, 2023–2030 (2022) Grand View Research, California. https://www.grandviewresearch.com/ Accessed 3 April 2023.

  6. Hamidi N, Galloway B (2022) Reprocessing post-consumer expanded polystyrene: mechanical and thermal properties of lightweight concrete made with postconsumer expanded polystyrene. J Macromol Sci Part B 61(6):811–824. https://doi.org/10.1080/00222348.2022.2113305

    Article  ADS  CAS  Google Scholar 

  7. Pesarit JM, Nabio KA, Cuizon JV, Javier JJ, Balce JE, Obamos JR, Salazar EC, Sugpatan J, Agustin E, Vanguardia SC (2021) Manufacturing of biodegradable cushion packaging material using compound properties of chicken feather and cornstarch as alternative to expanded polystyrene foam. IEEE. https://doi.org/10.1109/HNICEM54116.2021.9731969

    Article  Google Scholar 

  8. Ruj B, Pandey V, Jash P, Srivastava VK (2015) Sorting of plastic waste for effective recycling. Int J Appl Sci Eng Res 4(4):564–571. https://doi.org/10.6088/ijaser.04058

    Article  CAS  Google Scholar 

  9. Maulidati N, Cahyo AD, Djamari DW, Fikri MR, Triawan F (2021) Development of sorting system for plastic bottle waste management. IOP Conf Ser Mater Sci Eng 1098(6):062103. https://doi.org/10.1088/1757-899X/1098/6/062103

    Article  Google Scholar 

  10. Richard GM, Mario M, Javier T, Susana T (2011) Optimization of the recovery of plastics for recycling by density media separation cyclones. Resour Conserv Recycl 55(4):472–482. https://doi.org/10.1016/j.resconrec.2010.12.010

    Article  Google Scholar 

  11. Wu G, Li J, Xu Z (2013) Triboelectrostatic separation for granular plastic waste recycling: a review. Waste Manage 33(3):585–597. https://doi.org/10.1016/j.wasman.2012.10.014

    Article  Google Scholar 

  12. Wang JC, Wang H, Huang LL, Wang CQ (2017) Surface treatment with Fenton for separation of acrylonitrile-butadiene-styrene and polyvinylchloride waste plastics by flotation. Waste Manage 67:20–26. https://doi.org/10.1016/j.wasman.2017.05.009

    Article  CAS  Google Scholar 

  13. Lee MJ, Rahimifard S (2012) An air-based automated material recycling system for postconsumer footwear products. Resour Conserv Recycl 69:90–99. https://doi.org/10.1016/j.resconrec.2012.09.008

    Article  Google Scholar 

  14. Kökkılıç O, Mohammadi-Jam S, Chu P, Marion C, Yang Y, Waters KE (2022) Separation of plastic wastes using froth flotation–an overview. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2022.102769

    Article  PubMed  Google Scholar 

  15. Wang J, Wang H, Yue D (2020) Insights into mechanism of hypochlorite-induced functionalization of polymers toward separating BFR-containing components from microplastics. ACS Appl Mater Interfaces 12(32):36755–36767. https://doi.org/10.1021/acsami.0c09586

    Article  CAS  PubMed  Google Scholar 

  16. Liu SH, Lu CC, Lin CW, Chang SH (2021) Rapid modification of waste expanded polystyrene with H2SO4/trace persulfate in one pot for effective adsorption of fluoroquinolone antibiotic and its regeneration. Chemosphere 271:129529. https://doi.org/10.1016/j.chemosphere.2020.129529

    Article  CAS  PubMed  Google Scholar 

  17. Budlayan ML, Patricio JN, Lagare-Oracion JP, Arco SD, Alguno AC, Basilio A, Latayada FS, Capangpangan RY (2021) Improvised centrifugal spinning for the production of polystyrene microfibers from waste expanded polystyrene foam and its potential application for oil adsorption. J Eng Appl Sci 68(1):1–1. https://doi.org/10.1186/s44147-021-00030-y

    Article  CAS  Google Scholar 

  18. Uttaravalli AN, Dinda S, Gidla BR, Kasturi G, Kasala P, Penta G (2021) Studies on development of adhesive material from post-consumer (waste) expanded polystyrene: a two-edged sword approach. Process Saf Environ Prot 145:312–320. https://doi.org/10.1016/j.psep.2020.08.026

    Article  CAS  Google Scholar 

  19. Monsù Scolaro A, De Medici S (2021) Downcycling and upcycling in rehabilitation and adaptive reuse of pre-existing buildings: re-designing technological performances in an environmental perspective. Energies 14(21):6863. https://doi.org/10.3390/en14216863

    Article  Google Scholar 

  20. Salini NG, Resmi BG, Antony R (2021) Biodegradable composites of waste expanded polystyrene with modified neem oil for packaging applications. J Elastomers Plast 53(8):975–991. https://doi.org/10.1177/00952443211006164

    Article  CAS  Google Scholar 

  21. Chandran M, Asyraf Wan Mahmood WM, Omar FN, Lazim AM (2022) Removal of methylene blue from aqueous solution using modified polystyrene-calixarene (PS-C) composite. Water Air Soil Pollut 233(2):68. https://doi.org/10.1007/s11270-022-05533-9

    Article  ADS  CAS  Google Scholar 

  22. Moumen A, Belhocine Y, Sbei N, Rahali S, Ali FA, Mechati F, Hamdaoui F, Seydou M (2022) Removal of malachite green dye from aqueous solution by catalytic wet oxidation technique using Ni/kaolin as catalyst. Molecules 27(21):7528. https://doi.org/10.3390/molecules27217528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin XC, Liu GQ, Xu ZH, Tao WY (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243. https://doi.org/10.1007/s00253-006-0658-1

    Article  CAS  PubMed  Google Scholar 

  24. Mariyam A, Mittal J, Sakina F, Baker RT, Sharma AK, Mittal A (2021) Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. Arab J Chem 14(6):103186. https://doi.org/10.1016/j.arabjc.2021.103186

    Article  CAS  Google Scholar 

  25. Kusvuran E, Gulnaz O, Samil A, Yildirim Ö (2011) Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes. J Hazard Mater 186(1):133–143. https://doi.org/10.1016/j.jhazmat.2010.10.100

    Article  CAS  PubMed  Google Scholar 

  26. Borpatra Gohain M, Karki S, Yadav D, Yadav A, Thakare NR, Hazarika S, Lee HK, Ingole PG (2022) Development of antifouling thin-film composite/nanocomposite membranes for removal of phosphate and malachite green dye. Membranes 12(8):768. https://doi.org/10.3390/membranes12080768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iqbal A, Cevik E, Bozkurt A, Asiri SM, Alagha O, Qahtan TF, Jalees MI, Farooq MU (2022) Ultrahigh adsorption by regenerable iron-cobalt core-shell nanospheres and their synergetic effect on nanohybrid membranes for removal of malachite green dye. J Environ Chem Eng 10(3):107968. https://doi.org/10.1016/j.jece.2022.107968

    Article  CAS  Google Scholar 

  28. Li W, Xie Z, Xue S, Ye H, Liu M, Shi W, Liu Y (2021) Studies on the adsorption of dyes, methylene blue, safranin T, and malachite green onto polystyrene foam. Sep Purif Technol 276:119435. https://doi.org/10.1016/j.seppur.2021.119435

    Article  CAS  Google Scholar 

  29. Chen D, Xie Z, Ye H, Li W, Shi W, Liu Y (2022) Upcycling of expanded polystyrene waste: amination as adsorbent to recover Eriochrome black T and Congo red. Sep Purif Technol 289:120669. https://doi.org/10.1016/j.seppur.2022.120669

    Article  CAS  Google Scholar 

  30. Dardeera HM, Abouzeidb RE, Mahgouba MY, Abdelkadera A (2022) Adsorption of cationic methylene blue dye on polystyrene sulfonic acid composites from waste: kinetics and equilibrium. Egypt J Chem. https://doi.org/10.21608/EJCHEM.2021.104402.4822

    Article  Google Scholar 

  31. Ye C, Pan Z, Shen Y (2022) Facile conversion of polystyrene waste into an efficient sorbent for water purification. Polymers 14(21):4477. https://doi.org/10.3390/polym14214477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De León-Condés CA, Roa-Morales G, Martínez-Barrera G, Menchaca-Campos C, Bilyeu B, Balderas-Hernández P, Ureña-Núñez F, Toledo-Jaldin HP (2019) Sulfonated and gamma-irradiated waste expanded polystyrene with iron oxide nanoparticles, for removal of indigo carmine dye in textile wastewater. Heliyon 5(7):e02071. https://doi.org/10.1016/j.heliyon.2019.e02071

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Leon-Condes CA, Roa-Morales G, Martinez-Barrera G, Balderas-Hernandez P, Menchaca-Campos C, Urena-Nunez F (2019) A novel sulfonated waste polystyrene/iron oxide nanoparticles composite: green synthesis, characterization and applications. J Environ Chem Eng 7(1):102841. https://doi.org/10.1016/j.jece.2018.102841

    Article  CAS  Google Scholar 

  34. Hilal NM, Badawy NA, Mostafa OI, Elrefay HM (2019) Synthetic and application of a novel resin from waste foam packing for adsorption of acid orange 67 from aqueous solution. Bull Natl Res Centre 43(1):1–8. https://doi.org/10.1186/s42269-019-0093-y

    Article  Google Scholar 

  35. Srinivasan V, Sumalatha V, Prasannan A, Govindarajan S (2022) Utilization of Sulfonated waste polystyrene-based cobalt ferrite magnetic nanocomposites for efficient degradation of calcon dye. Polymers 14(14):2909. https://doi.org/10.3390/polym14142909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jia J, Fu Z, Wang L, Huang Z, Liu C (2019) Conversion of waste polystyrene foam into sulfonated hyper-crosslinked polymeric adsorbents for cadmium removal in a fixed-bed column. Chem Eng Res Des 142:346–354. https://doi.org/10.1016/j.cherd.2018.12.025

    Article  CAS  Google Scholar 

  37. Liu M, Xie Z, Ye H, Li W, Shi W, Liu Y, Zhang Y (2021) Waste polystyrene foam–chitosan composite materials as high-efficient scavenger for the anionic dyes. Colloids Surfaces A: Physicochem Eng Aspects 627:127155. https://doi.org/10.1016/j.colsurfa.2021.127155

    Article  CAS  Google Scholar 

  38. Ye H, Xie Z, Li W, Pu Y, Liu M, Wen Y, Liu Y (2022) Converting waste polystyrene foam into new value-added materials: a large-capacity scavenger to remove cationic dyes and heavy metals. J Appl Polym Sci 139(13):51868. https://doi.org/10.1002/app.51868

    Article  CAS  Google Scholar 

  39. Pu Y, Xie Z, Gong X, Yan Y, Zhang J (2021) Study on removal of organic dyes by Fe3O4/amidation modified waste polystyrene composites. Environ Technol Innov 23:101732. https://doi.org/10.1016/j.eti.2021.101732

    Article  CAS  Google Scholar 

  40. Pu Y, Xie Z, Ye H, Shi W (2021) Amidation modified waste polystyrene foam as an efficient recyclable adsorbent for organic dyes removal. Water Sci Technol 83(9):2192–2206. https://doi.org/10.2166/wst.2021.129

    Article  CAS  PubMed  Google Scholar 

  41. Conte P, Carotenuto G, Piccolo A, Perlo P, Nicolais L (2007) NMR-investigation of the mechanism of silver mercaptide thermolysis in amorphous polystyrene. J Mater Chem 17(2):201–205. https://doi.org/10.1039/B613228F

    Article  CAS  Google Scholar 

  42. Xuemei H, Hao Y (2013) Fabrication of polystyrene/detonation nanographite composite microspheres with the core/shell structure via pickering emulsion polymerization. J Nanomater. https://doi.org/10.1155/2013/751497

    Article  Google Scholar 

  43. Zhao K, Zhao J, Wu C, Zhang S, Deng Z, Hu X, Chen M, Peng B (2015) Fabrication of silver-decorated sulfonated polystyrene microspheres for surface-enhanced Raman scattering and antibacterial applications. RSC Adv 5(85):69543–69554. https://doi.org/10.1039/C5RA11643K

    Article  ADS  CAS  Google Scholar 

  44. Hussein AM, Dannoun EM, Aziz SB, Brza MA, Abdulwahid RT, Hussen SA, Rostam S, Mustafa DM, Muhammad DS (2020) Steps toward the band gap identification in polystyrene based solid polymer nanocomposites integrated with tin titanate nanoparticles. Polymers 12(10):2320. https://doi.org/10.3390/polym12102320

    Article  CAS  PubMed  Google Scholar 

  45. Olmos D, Martín EV, González-Benito J (2014) New molecular-scale information on polystyrene dynamics in PS and PS–BaTiO 3 composites from FTIR spectroscopy. Phys Chem Chem Phys 16(44):24339–24349. https://doi.org/10.1039/C4CP03516J

    Article  CAS  PubMed  Google Scholar 

  46. Fang J, Xuan Y, Li Q (2010) Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci China Technol Sci 53:3088–3093. https://doi.org/10.1007/s11431-010-4110-5

    Article  ADS  CAS  Google Scholar 

  47. Liu F, Song S, Cheng G, Xiong W, Shi L, Zhang Y (2018) MIL-101 (Cr) metal–organic framework functionalized with tetraethylenepentamine for potential removal of Uranium (VI) from waste water. Adsorpt Sci Technol 36(7–8):1550–1567. https://doi.org/10.1177/02636174187895

    Article  CAS  Google Scholar 

  48. Alwan SH, Alshamsi HA (2022) In situ synthesis NiO/F-MWCNTs nanocomposite for adsorption of malachite green dye from polluted water. Carbon Letters 32(4):1073–1084. https://doi.org/10.1007/s42823-022-00340-y

    Article  Google Scholar 

  49. Hou A, Sun G (2013) Multifunctional finishing of cotton fabrics with 3, 3′, 4, 4′-benzophenone tetracarboxylic dianhydride: reaction mechanism. Carbohyd Polym 95(2):768–772. https://doi.org/10.1016/j.carbpol.2013.02.027

    Article  MathSciNet  CAS  Google Scholar 

  50. do AmaralMontanheiro TL, Cristóvan FH, Machado JP, Tada DB, Durán N, Lemes AP (2015) Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J Mater Res 30(1):55–65. https://doi.org/10.1557/jmr.2014.303

    Article  ADS  CAS  Google Scholar 

  51. Eltaweil AS, Mohamed HA, Abd El-Monaem EM, El-Subruiti GM (2020) Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol 31(3):1253–1263. https://doi.org/10.1016/j.apt.2020.01.005

    Article  CAS  Google Scholar 

  52. Sakthivel S, Periakaruppan R, Vallinayagam S, Gandhi S, Tappa MM, Sharma VK, Sivaramakrishnan R, Suresh S, Gurusamy A (2022) Synthesis and characterization of paddy straw chitosan nanocomposite as an efficient photocatalytic bio-adsorbent for the removal of rhodamine B and malachite green dye from aqueous solution. Appl Nanosci. https://doi.org/10.1007/s13204-021-02141-7

    Article  Google Scholar 

  53. Das L, Das P, Bhowal A, Bhattachariee C (2020) Treatment of malachite green dye containing solution using bio-degradable sodium alginate/NaOH treated activated sugarcane baggsse charcoal beads: batch, optimization using response surface methodology and continuous fixed bed column study. J Environ Manag 276:111272. https://doi.org/10.1016/j.jenvman.2020.111272

    Article  CAS  Google Scholar 

  54. Murugesan A, Mahendran P (2020) High-performance polyimides with pendant fluorenylidene groups: synthesis, characterization and adsorption behaviour. J Polym Environ 28(9):2393–2409. https://doi.org/10.1007/s10924-020-01777-w

    Article  CAS  Google Scholar 

  55. Muinde VM, Onyari JM, Wamalwa B, Wabomba JN (2020) Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environ Chem Ecotoxicol 2:115–125. https://doi.org/10.1016/j.enceco.2020.07.005

    Article  Google Scholar 

  56. Rout DR, Jena HM (2021) Removal of malachite green dye from aqueous solution using reduced graphene oxide as an adsorbent. Mater Today: Proc 47:1173–1182. https://doi.org/10.1016/j.matpr.2021.03.406

    Article  CAS  Google Scholar 

  57. Sevim F, Lacin O, Ediz EF, Demir F (2021) Adsorption capacity, isotherm, kinetic, and thermodynamic studies on adsorption behavior of malachite green onto natural red clay. Environ Progress Sustain Energy 40(1):e13471. https://doi.org/10.1002/ep.13471

    Article  CAS  Google Scholar 

  58. Murugesan A, Divakaran M, Raveendran P, Nitin Nikamanth AB, Thelly KJ (2019) An eco-friendly porous poly (imide-ether) s for the efficient removal of methylene blue: adsorption kinetics, isotherm, thermodynamics and reuse performances. J Polym Environ 27:1007–1024. https://doi.org/10.1007/s10924-019-01408-z

    Article  CAS  Google Scholar 

  59. Ren J, Wang X, Zhao L, Li M, Yang W (2022) Double network gelatin/chitosan hydrogel effective removal of dyes from aqueous solutions. J Polym Environ 30(5):2007–2021. https://doi.org/10.1007/s10924-021-02327-8

    Article  CAS  Google Scholar 

  60. Abate GY, Alene AN, Habte AT, Addis YA (2021) Adsorptive removal of basic green dye from aqueous solution using humic acid modified magnetite nanoparticles: kinetics, equilibrium and thermodynamic studies. J Polym Environ 29:967–984. https://doi.org/10.1007/s10924-020-01932-3

    Article  CAS  Google Scholar 

  61. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  62. Freundlich HMF (1906) Uber die adsorption in losungen. Zeitschrift fur Physikalische Chemie 57:385–470

    CAS  Google Scholar 

  63. Temkin M, Pyzhev V (1940) Kinetics of the synthesis of ammonia on promoted iron catalysts. J Phys Chem 13:851

    Google Scholar 

  64. Mokhtar A, Abdelkrim S, Sardi A, Benyoub A, Besnaci H, Cherrak R, Hadjel M, Boukoussa B (2020) Preparation and characterization of anionic composite hydrogel for dyes adsorption and filtration: non-linear isotherm and kinetics modeling. J Polym Environ 28:1710–1723. https://doi.org/10.1007/s10924-020-01719-6

    Article  CAS  Google Scholar 

  65. Al-Musawi TJ, Mengelizadeh N, Al Rawi O, Balarak D (2022) Capacity and modeling of acid blue 113 dye adsorption onto chitosan magnetized by Fe2O3 nanoparticles. J Polym Environ 30(1):344–359. https://doi.org/10.1007/s10924-021-02200-8

    Article  CAS  Google Scholar 

  66. Hall R, Eaglton LC, Acrivos A, Vermevlem T (1966) Ind Eng Chem Fundam 5:212

    Article  CAS  Google Scholar 

  67. Pathak J, Singh P (2023) Adsorptive removal of congo red using organically modified zinc–copper–nickel ternary metal hydroxide: kinetics, isotherms and adsorption studies. J Polym Environ 31(1):327–344. https://doi.org/10.1007/s10924-022-02612-0

    Article  CAS  Google Scholar 

  68. Abdul Mubarak NS, Chuan TW, Khor HP, Jawad AH, Wilson LD, Sabar S (2021) Immobilized Fe-loaded chitosan film for methyl orange dye removal: competitive ions, reusability, and mechanism. J Polym Environ 29:1050–1062. https://doi.org/10.1007/s10924-020-01949-8

    Article  CAS  Google Scholar 

  69. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Mesoporous crosslinked chitosan-activated charcoal composite for the removal of thionine cationic dye: comprehensive adsorption and mechanism study. J Polym Environ 28(3):1095–1105. https://doi.org/10.1007/s10924-020-01671-5

    Article  CAS  Google Scholar 

  70. Tonk S, Aradi LE, Kovács G, Turza A, Rápó E (2022) Effectiveness and characterization of novel mineral clay in Cd2+ adsorption process: linear and non-linear isotherm regression analysis. Water 14(3):279. https://doi.org/10.3390/w14030279

    Article  CAS  Google Scholar 

  71. Ojediran JO, Dada AO, Aniyi SO, David RO, Adewumi AD (2021) Mechanism and isotherm modeling of effective adsorption of malachite green as endocrine disruptive dye using acid functionalized maize cob (AFMC). Sci Rep 11(1):21498. https://doi.org/10.1038/s41598-021-00993-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zain ZM, Abdulhameed AS, Jawad AH, ALOthman ZA, Yaseen ZM (2023) A pH-sensitive surface of chitosan/sepiolite clay/algae biocomposite for the removal of malachite green and remazol brilliant blue R dyes: optimization and adsorption mechanism study. J Polym Environ 31(2):501–518. https://doi.org/10.1007/s10924-022-02614-y

    Article  CAS  Google Scholar 

  73. Mouhamadou S, Dalhatou S, Dobe N, Djakba R, Fasanya OO, Bansod ND, Fita G, Ngayam CH, Tejeogue JP, Harouna M (2023) Linear and non-linear modelling of kinetics and equilibrium data for Cr (VI) adsorption by activated carbon prepared from Piliostigma reticulatum. Chem Africa 6(2):719–731. https://doi.org/10.1007/s42250-022-00324-5

    Article  CAS  Google Scholar 

  74. Noreen S, Tahira M, Ghamkhar M, Hafiz I, Bhatti HN, Nadeem R, Murtaza MA, Yaseen M, Sheikh AA, Naseem Z, Younas F (2021) Treatment of textile wastewater containing acid dye using novel polymeric graphene oxide nanocomposites (GO/PAN, GO/PPy, GO/PSty). J Market Res 14:25–35. https://doi.org/10.1016/j.jmrt.2021.06.007

    Article  CAS  Google Scholar 

  75. Ali H, Ismail AM (2021) Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics. J Polym Res 28:1–7. https://doi.org/10.1007/s10965-021-02789-3

    Article  CAS  Google Scholar 

  76. Amini Herab A, Salari D, Ostadrahimi A, Olad A (2022) Synthesis of innovative TiO2-inulin-Fe3O4 nanocomposite for removal of Ni (II), Cr (III), crystal violet and malachite green from aqueous solutions. J Polym Res 29(8):321. https://doi.org/10.1007/s10965-022-03186-0

    Article  CAS  Google Scholar 

  77. Silveira T, Caliman V, Silva GG (2022) Hydrogels based on polyacrylamide and functionalized carbon nanomaterials for adsorption of a cationic dye. J Polym Environ. https://doi.org/10.1007/s10924-022-02624-w

    Article  Google Scholar 

  78. Gao L, Wang Y, Yan T, Cui L, Hu L, Yan L, Wei Q, Du B (2015) A novel magnetic polysaccharide–graphene oxide composite for removal of cationic dyes from aqueous solution. New J Chem 39(4):2908–2916. https://doi.org/10.1039/C4NJ01792G

    Article  CAS  Google Scholar 

  79. Lagergren S (1898) Kung Svens Veten Handl 24:1

    Google Scholar 

  80. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  81. Wang J, Yue D, Li M, Wang H, Wang J, Wang C, Wang H (2023) Application of carbon nitride nanosheets for adsorption of various humic substances from aqueous solutions. Chem Eng J 454:140296. https://doi.org/10.1016/j.cej.2022.140296

    Article  CAS  Google Scholar 

  82. Radoor S, Karayil J, Jayakumar A, Parameswaranpillai J, Siengchin S (2021) An efficient removal of malachite green dye from aqueous environment using ZSM-5 zeolite/polyvinyl alcohol/carboxymethyl cellulose/sodium alginate bio composite. J Polym Environ 29:2126–2139. https://doi.org/10.1007/s10924-020-02024-y

    Article  CAS  Google Scholar 

  83. Wang J, Wang C, Shi A, Shi Y, Yue D, Zhang L, Wang J, Wang H, Wang C, Cui D (2023) An innovative approach for landfill leachate treatment based on selective adsorption of humic acids with carbon nitride. Chem Eng J 461:142090. https://doi.org/10.1016/j.cej.2023.142090

    Article  CAS  Google Scholar 

  84. Sahoo TR, Prelot B (2020) Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. Nanomaterials for the detection and removal of wastewater pollutants. Elsevier, pp 161–222

    Chapter  Google Scholar 

  85. Wang J, Li H, Yue D (2022) Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride. J Hazard Mater 424:127643. https://doi.org/10.1016/j.jhazmat.2021.127643

    Article  CAS  PubMed  Google Scholar 

  86. Kamdod AS, Kumar MV (2022) Adsorption of methylene blue, methyl orange, and crystal violet on microporous coconut shell activated carbon and its composite with chitosan: Isotherms and kinetics. J Polym Environ 30(12):5274–5289. https://doi.org/10.1007/s10924-022-02597-w

    Article  CAS  Google Scholar 

  87. Li P, Fu T, Gao X, Zhu W, Han C, Liu N, He S, Luo Y, Ma W (2019) Adsorption and reduction transformation behaviors of Cr (VI) on mesoporous polydopamine/titanium dioxide composite nanospheres. J Chem Eng Data 64(6):2686–2696. https://doi.org/10.1021/acs.jced.9b00111

    Article  CAS  Google Scholar 

  88. Machado FM, Carmalin SA, Lima EC, Dias SL, Prola LD, Saucier C, Jauris IM, Zanella I, Fagan SB (2016) Adsorption of alizarin red S dye by carbon nanotubes: an experimental and theoretical investigation. J Phys Chem C 120(32):18296–18306. https://doi.org/10.1021/acs.jpcc.6b03884

    Article  CAS  Google Scholar 

  89. Sarreshtehdar Aslaheh H, Poursattar Marjani A, Gozali Balkanloo P (2023) Pelargonium as a cost-effective additive in bio-composite adsorbent in removing dyes from wastewater: equilibrium, kinetic, and thermodynamic studies. J Polym Environ 15:1–8. https://doi.org/10.1007/s10924-023-02794-1

    Article  CAS  Google Scholar 

  90. Guo F, Jiang X, Li X, Jia X, Liang S, Qian L (2020) Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Mater Chem Phys 240:122240. https://doi.org/10.1016/j.matchemphys.2019.122240

    Article  CAS  Google Scholar 

  91. Abate GY, Alene AN, Habte AT, Getahun DM (2020) Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent. Environ Syst Res 9(1):1–3. https://doi.org/10.1186/s40068-020-00191-4

    Article  Google Scholar 

Download references

Funding

The Author Thankam Regi would like to thank SSN College of Engineering, Chennai, India 603110, for the research funding support with grant no: Lr. No. SSN CE JRF/2020.

Author information

Authors and Affiliations

Authors

Contributions

TR: Conceptualization, Methodology, Investigation, Writing-original draft preparation, Editing, Data curation and analysis. AKS: Conceptualization, Supervision, Review, Validation, Corrections and editing. AM: Supervision, Review, Validation, Corrections and editing. ASR: Editing, Data curation and analysis.

Corresponding author

Correspondence to Arun Karthick Selvam.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

All content is subject to ethical approval and consent to participate.

Consent to Participate

Not applicable.

Consent for Publication

The consent of all the authors of this article has been obtained for submitting the article to the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regi, T., Selvam, A.K., Murugesan, A. et al. Conversion of Waste Thermocol into Effective Adsorbent by Chemical Modification: Removal of Malachite Green from Aqueous Media. J Polym Environ 32, 1469–1488 (2024). https://doi.org/10.1007/s10924-023-03045-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03045-z

Keywords

Navigation