Skip to main content

Advertisement

Log in

Electrospun Bilayer Membranes Carrying Bearberry/Licorice Extract to Ameliorate Wound Healing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Trauma, burns, and chronic illnesses cause non-healing wounds or defective healing, leading to scar formation due to excessive fibrosis, disordered collagen, and hyperpigmentation. The conventional single layered gauze dressings and composite dressings have limited advantages. Therefore, the advanced green alternative dressings need to be explored for non-toxic antibacterial and fast wound healing process. The present study focuses on the development of highly compatible PLA-PHBV bilayer electrospun (ES) membrane dressings. The membranes were surface-functionalized/coated with chitosan polymer and pure plant extracts (bearberry leaf extract) (BE) and (licorice root extract) (LE). The presence of flavonoids and terpenoids in the extracts was confirmed using FTIR and GC–MS analyses. The coated ES bilayer membranes were characterized using SEM, contact angle measurements, drug release profile, antibacterial analysis, biocompatibility, and wound healing assays. The results suggest that coated ES membranes are hydrophilic and can carry and release the extracts in a dose-dependent manner. These characteristics increased the regenerative potential of ES membranes as shown by in vitro cell cultures and significantly activated wound healing studied by in vitro fibroblast cultures compared to the non-coated control ES bilayer membranes. Moreover, the modified membranes had antibacterial potential as studied utilizing S. aureus and E. coli bacteria. These bilayer ES membranes carrying plant extracts can be used to heal and regenerate lost tissues in various applications, and may also be effective against hyperpigmentation during healing. Further molecular analyses and in vivo tests may prove their effectiveness against scars and hyperpigmentation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available on request.

References

  1. Yang X et al (2017) Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11(6):5737–5745

    Article  CAS  PubMed  Google Scholar 

  2. Tottoli EM et al (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8):735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baumfeld D et al (2018) Factors related to amputation level and wound healing in diabetic patients. Acta Ortop Bras. 26:342–345

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu Z et al (2020) Adv Healthc Mater 9(5):1901502

    Article  CAS  Google Scholar 

  5. Guha Ray P et al (2018) ACS Appl Bio Mater 1(4):985–998

    Article  CAS  PubMed  Google Scholar 

  6. Shirakami E, Yamakawa S, Hayashida K (2020) Strategies to prevent hypertrophic scar formation: a review of therapeutic interventions based on molecular evidence. Burns Trauma. https://doi.org/10.1093/burnst/tkz003

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rathee P et al (2021) Skin hyperpigmentation and its treatment with herbs: an alternative method. Futur J Pharm Sci 7(1):132

    Article  MathSciNet  Google Scholar 

  8. Wilkinson HN, Hardman MJ (2020) Wound healing: Cellular mechanisms and pathological outcomes. Open Biol 10(9):200223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monika P et al (2022) Challenges in healing wound: Role of complementary and alternative medicine 8:1198

    Google Scholar 

  10. Deng X, Gould M, Ali MA (2022) A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res 110(11):2542–2573

    Article  CAS  Google Scholar 

  11. Rodrigues M et al (2019) Wound healing: a cellular perspective. Pharmaceutics 99(1):665–706

    CAS  Google Scholar 

  12. Akrawi SH et al (2020) Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing 12(9):893

    CAS  Google Scholar 

  13. Pirbalouti, A.G., A. Koohpayeh, and I.J.A.P.P. Karimi, The wound healing activity of flower extracts of Punica granatum and Achillea kellalensis in Wistar rats. 2010. 67(1): p. 107–10.

  14. Almasian A et al (2020) Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater Sci Eng 114:111039

    Article  CAS  Google Scholar 

  15. Sarkar R, Arora P, Garg KV (2013) Cosmeceuticals for hyperpigmentation: what is available? J Cutan Aesthet Surg 6(1):4–11

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu, H et al., (2020) Natural plant extract berbamine is a potent inhibitor of cell growth and survival of human tenon’s fibroblasts. Ophthalmic Res 63(6): 555 563

  17. Zhu W, Gao J (2008) The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 13(1):20–24

    Article  CAS  PubMed  Google Scholar 

  18. Smit N, Vicanova J, Pavel S (2009) The Hunt for Natural Skin Whitening Agents 10(12):5326–5349

    CAS  Google Scholar 

  19. Allemann IB, Baumann L (2009) Botanicals in skin care products. Int J Dermatol 48(9):923–934

    Article  CAS  PubMed  Google Scholar 

  20. Wang L et al (2015) The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharmaceutica Sinica B 5(4):310–315

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang R et al (2017) The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol 55(1):5–18

    Article  CAS  PubMed  Google Scholar 

  22. Sharifi-Rad J et al (2021) Glycyrrhiza genus: enlightening phytochemical components for pharmacological and health-promoting abilities. Oxid Med Cell Longev. https://doi.org/10.1155/2021/8541783

    Article  PubMed  PubMed Central  Google Scholar 

  23. Derakhshanfar A et al (2019) The role of Iranian medicinal plants in experimental surgical skin wound healing: An integrative review. J Iranian J Basic Med Sci 22(6):590–600

    Google Scholar 

  24. Arzi A, Hemmati A, Amin MJJ (2003) Stimulation of wound healing by licorice in rabbits. Saudi Pharm 11:57–60

    CAS  Google Scholar 

  25. Yokota T et al (1998) The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res 11(6):355–361

    Article  CAS  PubMed  Google Scholar 

  26. Liang Y et al (2022) Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 17:353

    Article  PubMed  PubMed Central  Google Scholar 

  27. Firoozbahr M et al (2023) Recent advances in using natural antibacterial additives in bioactive wound dressings 15(2):644

    CAS  Google Scholar 

  28. Qin Y (2010) Chapter 1 - Overview of Micro-Manufacturing. In: Qin Y (ed) Micro-Manufacturing Engineering and Technology. William Andrew Publishing, Boston, pp 1–23

    Google Scholar 

  29. Liao Y et al (2018) Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 77:69–94

    Article  CAS  Google Scholar 

  30. Nasreen SAAN et al (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3(4):266–284

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yao C et al (2008) Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membr Sci 320(1–2):259–267

    Article  CAS  Google Scholar 

  32. Shaulsky E et al (2017) Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications. J Membr Sci 530:158–165

    Article  CAS  Google Scholar 

  33. Bombin ADJ et al (2020) Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C Mater Biol Appl 114:110994

    Article  Google Scholar 

  34. Augustine R et al (2020) Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 156:153–170

    Article  CAS  PubMed  Google Scholar 

  35. Homaeigohar S, Boccaccini AR (2020) Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 107:25–49

    Article  CAS  PubMed  Google Scholar 

  36. Fahimirad S, Ajalloueian F (2019) Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int J Pharm 566:307–328

    Article  CAS  PubMed  Google Scholar 

  37. Joseph B et al (2019) Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater Today Commun 19:319–335

    Article  CAS  Google Scholar 

  38. Repanas A et al (2016) The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J Drug Delivery Sci Technol 31:137–146

    Article  CAS  Google Scholar 

  39. Xue J et al (2019) Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 119(8):5298–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thanh NT et al (2018) Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application 91:318–329

    Google Scholar 

  41. Yeh LK et al (2009) The phenotype of bovine corneal epithelial cells on chitosan membrane 90(1):18–26

    MathSciNet  Google Scholar 

  42. Tebaldi ML et al (2019) Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility. J Drug Delivery Sci Technol 51:115–126

    Article  CAS  Google Scholar 

  43. Sundaramurthi D, Krishnan UM, Sethuraman S (2014) Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev 54(2):348–376

    Article  CAS  Google Scholar 

  44. Augustine R et al (2020) Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications. ACS Biomater Sci Eng 6(1):58–70

    Article  CAS  PubMed  Google Scholar 

  45. Gong W et al (2018) Wound healing and inflammation characteristics of the submicrometric mats prepared from electrospinning. J Bioact Compat Polym 34(1):83–96

    Article  Google Scholar 

  46. Ruan C et al (2016) Effect of cellulose crystallinity on bacterial cellulose assembly. Cellulose 23:3417–3427

    Article  CAS  Google Scholar 

  47. Mutlu G et al (2018) Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J Drug Delivery Sci Technol 43:185–193

    Article  CAS  Google Scholar 

  48. Zonari A et al (2015) Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring. Acta Biomater 17:170–181

    Article  CAS  PubMed  Google Scholar 

  49. Augustine R et al (2021) Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. Mater Sci Eng, C 118:111519

    Article  CAS  Google Scholar 

  50. Park HJ et al (2016) Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. J Biomed Mater Res 104(7):1779–1787

    Article  CAS  Google Scholar 

  51. Ehiowemwenguan G, Emoghene A, Inetianbor J (2014) Antibacterial and phytochemical analysis of Banana fruit peel. IOSRPHR 4(8):18–25

    Article  Google Scholar 

  52. Yousefi I et al (2017) An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C 75:433–444

    Article  CAS  Google Scholar 

  53. Hanafi N et al (2018) Licorice cream promotes full-thickness wound healing in Guinea pigs 22(1):84–94

    MathSciNet  Google Scholar 

  54. Sugier P et al (2021) Chemical characteristics and antioxidant activity of Arctostaphylos uva-ursi L. Spreng. at the southern border of the geographical range of the species in Europe. Molecules 26(24):7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Negut I, Dorcioman G, Grumezescu VJP (2020) Scaffolds for wound healing applications 12(9):2010

    CAS  Google Scholar 

  56. Requena R et al (2016) Effect of plasticizers on thermal and physical properties of compression-moulded poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] films. Polym Testing 56:45–53

    Article  CAS  Google Scholar 

  57. Wolf C et al (2016) Water vapor sorption and diffusion in wheat straw particles and their impact on the mass transfer properties of biocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.43329

    Article  Google Scholar 

  58. Nokoorani YD et al (2021) Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering 11(1):16164

    CAS  Google Scholar 

  59. Puttipipatkhachorn S et al (2001) Drug physical state and drug–polymer interaction on drug release from chitosan matrix films. J Control Release 75(1):143–153

    Article  CAS  PubMed  Google Scholar 

  60. Johnson N, Wang Y (2015) Drug delivery systems for wound healing. Curr Pharm Biotechnol 16(7):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suwannakul S, Chaibenjawong P (2017) Antibacterial activities of Glycyrrhiza gabra Linn(licorice) root extract against Porphyromonas gingivalis rand its inhibitory effects on cysteine proteases and biofilms. J Dent Indones 24(3):85–92

    Article  Google Scholar 

  62. Vučić, D.M., et al., In vitro efficacy of extracts of Arctostaphylos uva-ursi L. on clinical isolated Escherichia coli and Enterococcus faecalis strains. 2013(35): p. 107–113.

  63. Carpenter R, O’Callaghan YC, O’Grady MN, Kerry JP, O’Brien NM (2006) Modulatory effects of resveratrol, citroflavan-3-ol, and plant-derived extracts on oxidative stress in U937 cells. J Med Food 9(2):187–195

    Article  PubMed  Google Scholar 

  64. Assar DH et al (2021) Wound healing potential of licorice extract in rat model: Antioxidants, histopathological, immunohistochemical and gene expression evidences. Biomed Pharmacother 143:112151

    Article  CAS  PubMed  Google Scholar 

  65. Zaki A, El-Bakry M, Fahmy AA (2005) Effect of licorice on wound healing in rabbits. Egypt J Hosp Med 20(1):58–65

    Article  Google Scholar 

  66. Polouliakh N et al (2020) Alpha-arbutin promotes wound healing by lowering ROS and upregulating insulin/IGF-1 pathway in human dermal fibroblast. Front Physiol 11:586843

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Higher Education Commission of Pakistan through grant funded to Dr Faiza Sharif under NRPU-HEC project number 7787 to conduct this research. We would like to thank Dr Mazhar Amjad Gilani HOD Chemistry (CUI, Lahore) for his support and Mr Muhammad Farooq LCWU for his support in SEM analysis.

Funding

Higher Education Commission of Pakistan through grant no NRPU-HEC/7787 funded for this research.

Author information

Authors and Affiliations

Authors

Contributions

AZ, NB, SN, FS: conceptualization, methodology, formal analysis, data curation, writing. MB, AK, FAK, NM, FS: methodology, validation, resources, writing, supervision.

Corresponding authors

Correspondence to Nawshad Muhammad or Faiza Sharif.

Ethics declarations

Conflict of interest

There is no conflict of interest for this study among all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehra, A., Bokhari, N., Nosheen, S. et al. Electrospun Bilayer Membranes Carrying Bearberry/Licorice Extract to Ameliorate Wound Healing. J Polym Environ 32, 735–748 (2024). https://doi.org/10.1007/s10924-023-03007-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03007-5

Keywords

Navigation