Skip to main content
Log in

Bilayer Polylactic Acid and Chitosan/Gelatin Film Containing Epigallocatechin Gallate Prepared through Solvent Casting and Electrospinning: Properties, Bioactivities and Release Kinetics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper presents the development of biodegradable and environmentally friendly packaging films. Active packaging bilayer films were prepared by combining chitosan-fish gelatin (CS-FG) with epigallocatechin-3-gallate (EGCG) at varying concentrations on the top layer of polylactic acid (PLA) film via solvent casting (SC-films) or electrospinning (ES-films) technique. Incorporation of EGCG (0.5–2%) in films significantly increased tensile strength, film thickness, water vapor barrier properties, seal strength and antioxidant activities (P < 0.05), whereas swelling ability and light transmittance decreased (P < 0.05). Fourier Transform Infrared (FTIR) spectra confirmed the intermolecular interaction among CS, FG and EGCG. The shift of some peaks was also recorded with the addition of EGCG. Films with higher levels of EGCG (2%) had greater antioxidant activities in both SC-films and ES-films (P < 0.05). Based on thermal analysis, both the bilayer films had lower thermal stability than the PLA film. Scanning electron microstructure revealed the smooth and compact structure of SC-films. On the other hand, ES-films had a network of compact fibers having a diameter of 160–190 nm. Both SC-films and ES-films showed the controlled release of EGCG following the Fickian diffusion-controlled release mechanism, but the latter exhibited a slower release rate. Thus, both films could serve as active packaging with antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data were not shared.

References

  1. Baranwal J, Barse B, Fais A et al (2022) Biopolymer: a sustainable material for food and medical applications. Polym (Basel) 14:983. https://doi.org/10.3390/polym14050983

    Article  CAS  Google Scholar 

  2. Atta OM, Manan S, Shahzad A et al (2022) Biobased materials for active food packaging: a review. Food Hydrocoll 125:107419. https://doi.org/10.1016/j.foodhyd.2021.107419

    Article  CAS  Google Scholar 

  3. Limbo S, Khaneghah AM (2015) Active packaging of foods and its combination with electron beam processing. Electron Beam pasteurization and complementary food Processing Technologies. Elsevier, pp 195–217

  4. Mariño-Cortegoso S, Stanzione M, Andrade MA et al (2022) Development of active films utilizing antioxidant compounds obtained from tomato and lemon by-products for use in food packaging. Food Control 140:109128. https://doi.org/10.1016/j.foodcont.2022.109128

    Article  CAS  Google Scholar 

  5. Jeya Shakila R, Jeevithan E, Varatharajakumar A et al (2012) Comparison of the properties of multi-composite fish gelatin films with that of mammalian gelatin films. Food Chem 135:2260–2267. https://doi.org/10.1016/j.foodchem.2012.07.069

    Article  CAS  PubMed  Google Scholar 

  6. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G et al (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23:383–395. https://doi.org/10.1080/1023666X.2018.1455382

    Article  Google Scholar 

  7. Kouhi M, Prabhakaran MP, Ramakrishna S (2020) Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends Food Sci Technol 103:248–263. https://doi.org/10.1016/j.tifs.2020.05.025

    Article  CAS  Google Scholar 

  8. Leceta I, Guerrero P, de la Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346. https://doi.org/10.1016/j.carbpol.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  9. Luo Q, Hossen MA, Zeng Y et al (2022) Gelatin-based composite films and their application in food packaging: A review. J Food Eng 313:110762. https://doi.org/10.1016/j.jfoodeng.2021.110762

    Article  CAS  Google Scholar 

  10. Karim AA, Bhat R (2009) Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll 23:563–576. https://doi.org/10.1016/j.foodhyd.2008.07.002

    Article  CAS  Google Scholar 

  11. Rivero S, García MA, Pinotti A (2009) Composite and bi-layer films based on gelatin and chitosan. J Food Eng 90:531–539. https://doi.org/10.1016/j.jfoodeng.2008.07.021

    Article  CAS  Google Scholar 

  12. Ahmed S, Ikram S (2016) Chitosan and gelatin based biodegradable packaging films with UV-light protection. J Photochem Photobiol B 163:115–124. https://doi.org/10.1016/j.jphotobiol.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  13. Nowzari F, Shábanpour B, Ojagh SM (2013) Comparison of chitosan–gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chem 141:1667–1672. https://doi.org/10.1016/j.foodchem.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  14. Sarmast E, Fallah AA, Habibian Dehkordi S, Rafieian-Kopaei M (2019) Impact of glazing based on chitosan-gelatin incorporated with persian lime (Citrus latifolia) peel essential oil on quality of rainbow trout fillets stored at superchilled condition. Int J Biol Macromol 136:316–323. https://doi.org/10.1016/j.ijbiomac.2019.06.087

  15. Khan A, Ezati P, Rhim J-W (2023) Chitosan/gelatin-based multifunctional film integrated with green tea carbon dots to extend the shelf life of pork. Food Packag Shelf Life 37:101075. https://doi.org/10.1016/j.fpsl.2023.101075

    Article  CAS  Google Scholar 

  16. Naser AZ, Deiab I, Darras BM (2021) Poly lactic acid (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv 11:17151–17196. https://doi.org/10.1039/D1RA02390J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu M, Zheng Y, Tian J (2020) Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials. RSC Adv 10:26298–26307. https://doi.org/10.1039/D0RA00274G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gulzar S, Tagrida M, Nilsuwan K et al (2022) Electrospinning of gelatin/chitosan nanofibers incorporated with tannic acid and chitooligosaccharides on polylactic acid film: Characteristics and bioactivities. Food Hydrocoll 133:107916. https://doi.org/10.1016/j.foodhyd.2022.107916

    Article  CAS  Google Scholar 

  19. Muthukrishnan L (2022) An overview on electrospinning and its advancement toward hard and soft tissue engineering applications. Colloid Polym Sci 300:875–901. https://doi.org/10.1007/s00396-022-04997-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alias AR, Wan MK, Sarbon NM (2022) Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control 136:108875. https://doi.org/10.1016/j.foodcont.2022.108875

    Article  CAS  Google Scholar 

  21. Zhao W, Liang X, Wang X et al (2022) Chitosan based film reinforced with EGCG loaded melanin-like nanocomposite (EGCG@MNPs) for active food packaging. Carbohydr Polym 290:119471. https://doi.org/10.1016/j.carbpol.2022.119471

    Article  CAS  PubMed  Google Scholar 

  22. Mittal A, Singh A, Aluko RE, Benjakul S (2021) Pacific white shrimp (Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. J Food Biochem 45:1–16. https://doi.org/10.1111/jfbc.13569

  23. Mokra D, Adamcakova J, Mokry J (2022) Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG): A time for a new player in the treatment of respiratory diseases? Antioxidants 11:1566. https://doi.org/10.3390/antiox11081566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nilsuwan K, Benjakul S, Prodpran T (2018) Properties and antioxidative activity of fish gelatin-based film incorporated with epigallocatechin gallate. Food Hydrocoll 80:212–221. https://doi.org/10.1016/j.foodhyd.2018.01.033

    Article  CAS  Google Scholar 

  25. Leistner L (2000) Basic aspects of food preservation by hurdle technology. Int J Food Microbiol 55:181–186. https://doi.org/10.1016/S0168-1605(00)00161-6

    Article  CAS  PubMed  Google Scholar 

  26. Liang J, Yan H, Zhang J et al (2017) Preparation and characterization of antioxidant edible chitosan films incorporated with epigallocatechin gallate nanocapsules. Carbohydr Polym 171:300–306. https://doi.org/10.1016/j.carbpol.2017.04.081

    Article  CAS  PubMed  Google Scholar 

  27. Xue Y, Mou Z, Xiao H (2017) Nanocellulose as a sustainable biomass material: Structure, properties, present status and future prospects in biomedical applications. Nanoscale 9:14758–14781. https://doi.org/10.1039/C7NR04994C

    Article  CAS  PubMed  Google Scholar 

  28. Shiku Y, Yuca Hamaguchi P, Benjakul S et al (2004) Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chem 86:493–499. https://doi.org/10.1016/j.foodchem.2003.09.022

    Article  CAS  Google Scholar 

  29. Tagrida M, Nilsuwan K, Gulzar S et al (2023) Fish gelatin/chitosan blend films incorporated with betel (Piper betle L.) leaf ethanolic extracts: characteristics, antioxidant and antimicrobial properties. Food Hydrocoll 137:108316. https://doi.org/10.1016/j.foodhyd.2022.108316

    Article  CAS  Google Scholar 

  30. Nilsuwan K, Guerrero P, de la Caba K et al (2020) Properties and application of bilayer films based on poly lactic acid and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll 105:105792. https://doi.org/10.1016/j.foodhyd.2020.105792

    Article  Google Scholar 

  31. Zarandona I, Minh NC, Trung TS et al (2021) Evaluation of bioactive release kinetics from crosslinked chitosan films with Aloe vera. Int J Biol Macromol 182:1331–1338. https://doi.org/10.1016/j.ijbiomac.2021.05.087

    Article  CAS  PubMed  Google Scholar 

  32. Hurrell RF, Finot P-A (1984) Nutritional consequences of the reactions between proteins and oxidized polyphenolic acids. pp 423–435

  33. Tongnuanchan P, Benjakul S, Prodpran T et al (2016) Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocoll 56:93–107. https://doi.org/10.1016/j.foodhyd.2015.12.005

    Article  CAS  Google Scholar 

  34. Mathaba M, Daramola MO (2020) Effect of chitosan’s degree of deacetylation on the performance of pes membrane infused with chitosan during AMD treatment. Membr (Basel) 10:52. https://doi.org/10.3390/membranes10030052

    Article  CAS  Google Scholar 

  35. Surendren A, Mohanty AK, Liu Q, Misra M (2022) A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chem 24:8606–8636. https://doi.org/10.1039/D2GC02169B

    Article  CAS  Google Scholar 

  36. Ninjiaranai P (2015) Biopolymer films based on chitosan and polyethylene glycol with pineapple leaf fiber for food packaging applications. Macromol Symp 354:294–298. https://doi.org/10.1002/masy.201400090

    Article  CAS  Google Scholar 

  37. Wang X, Xie Y, Ge H et al (2018) Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose. Carbohydr Polym 179:207–220. https://doi.org/10.1016/j.carbpol.2017.09.087

    Article  CAS  PubMed  Google Scholar 

  38. Rhim J-W, Hong S-I, Ha C-S (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology 42:612–617. https://doi.org/10.1016/j.lwt.2008.02.015

    Article  CAS  Google Scholar 

  39. Ebrahimi S, Fathi M, Kadivar M (2019) Production and characterization of chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to enhance edible film’s properties. Food Packag Shelf Life 22:100387. https://doi.org/10.1016/j.fpsl.2019.100387

    Article  Google Scholar 

  40. Pulla-Huillca PV, Gomes A, Quinta Barbosa Bittante AM et al (2021) Wettability of gelatin-based films: The effects of hydrophilic or hydrophobic plasticizers and nanoparticle loads. J Food Eng 297:110480. https://doi.org/10.1016/j.jfoodeng.2021.110480

    Article  CAS  Google Scholar 

  41. Huang S-T, Hung Y-A, Yang M-J et al (2019) Effects of epigallocatechin gallate on the stability of epicatechin in a photolytic process. Molecules 24:787. https://doi.org/10.3390/molecules24040787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonilla J, Sobral PJA (2016) Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Biosci 16:17–25. https://doi.org/10.1016/j.fbio.2016.07.003

    Article  CAS  Google Scholar 

  43. Hoidy H, Ahmad WB, Jaffar Al- M, Bt Ibrahim EA NA (2010) Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites. J Appl Sci 10:97–106. https://doi.org/10.3923/jas.2010.97.106

    Article  CAS  Google Scholar 

  44. Mittal A, Singh A, Benjakul S et al (2021) Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocoll 111:106384. https://doi.org/10.1016/j.foodhyd.2020.106384

    Article  CAS  Google Scholar 

  45. Ibrahim M, Mahmoud AA, Osman O et al (2011) Molecular spectroscopic analyses of gelatin. Spectrochim Acta A Mol Biomol Spectrosc 81:724–729. https://doi.org/10.1016/j.saa.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  46. Mekahlia S, Bouzid B (2009) Chitosan-Copper (II) complex as antibacterial agent: Synthesis, characterization and coordinating bond- activity correlation study. Phys Procedia 2:1045–1053. https://doi.org/10.1016/j.phpro.2009.11.061

    Article  CAS  Google Scholar 

  47. Colomer MT (2013) Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides. J Solgel Sci Technol 67:135–144. https://doi.org/10.1007/s10971-013-3059-9

    Article  CAS  Google Scholar 

  48. Floegel A, Kim D-O, Chung S-J et al (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24:1043–1048. https://doi.org/10.1016/j.jfca.2011.01.008

    Article  CAS  Google Scholar 

  49. Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch Biochem Biophys 501:65–72. https://doi.org/10.1016/j.abb.2010.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Diao Y, Yu X, Zhang C, Jing Y (2020) Quercetin-grafted chitosan prepared by free radical grafting: Characterization and evaluation of antioxidant and antibacterial properties. J Food Sci Technol 57:2259–2268. https://doi.org/10.1007/s13197-020-04263-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Avelelas F, Horta A, Pinto LFV et al (2019) Antifungal and antioxidant properties of chitosan polymers obtained from nontraditional Polybius henslowii sources. Mar Drugs 17:239. https://doi.org/10.3390/md17040239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumamoto M, Sonda T, Nagayama K, Tabata M (2001) Effects of pH and metal ions on antioxidative activities of catechins. Biosci Biotechnol Biochem 65:126–132. https://doi.org/10.1271/bbb.65.126

    Article  CAS  PubMed  Google Scholar 

  53. Nezarati RM, Eifert MB, Cosgriff-Hernandez E (2013) Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Methods 19:810–819. https://doi.org/10.1089/ten.tec.2012.0671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu X-Q, Mirza NR, Huang Z et al (2021) Enhanced desalination performance of aluminium fumarate MOF-incorporated electrospun nanofiber membrane with bead-on-string structure for membrane distillation. Desalination 520:115338. https://doi.org/10.1016/j.desal.2021.115338

    Article  CAS  Google Scholar 

  55. Yaneva Z, Ivanova D (2020) Catechins within the biopolymer matrix—design concepts and bioactivity prospects. Antioxidants 9:1180. https://doi.org/10.3390/antiox9121180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hong P-Z, Li S-D, Ou C-Y et al (2007) Thermogravimetric analysis of chitosan. J Appl Polym Sci 105:547–551. https://doi.org/10.1002/app.25920

    Article  CAS  Google Scholar 

  57. Chuaynukul K, Prodpran T, Benjakul S (2015) Properties of thermo-compression molded bovine and fish gelatin films as influenced by resin preparation condition. Int Food Res J 22:1095–1102

    CAS  Google Scholar 

  58. Liu Z, Wang Z, Gan W et al (2022) Computational and experimental investigation of the selective adsorption of indium/iron ions by the epigallocatechin gallate monomer. Materials 15:8251. https://doi.org/10.3390/ma15228251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Benbettaïeb N, Karbowiak T, Brachais C-H, Debeaufort F (2015) Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan–gelatin films: a structure–function approach. Eur Polym J 67:113–127. https://doi.org/10.1016/j.eurpolymj.2015.03.060

    Article  CAS  Google Scholar 

  60. Wu J, Chen S, Ge S et al (2013) Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll 32:42–51. https://doi.org/10.1016/j.foodhyd.2012.11.029

    Article  CAS  Google Scholar 

  61. Wang Q, Chen W, Zhu W et al (2022) A review of multilayer and composite films and coatings for active biodegradable packaging. NPJ Sci Food 6:18. https://doi.org/10.1038/s41538-022-00132-8

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vermeirssen ELM, Dietschweiler C, Escher BI et al (2013) Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler. Anal Bioanal Chem 405:5225–5236. https://doi.org/10.1007/s00216-013-6878-1

    Article  CAS  PubMed  Google Scholar 

  63. Jarosz M, Pawlik A, Szuwarzyński M et al (2016) Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids Surf B Biointerfaces 143:447–454. https://doi.org/10.1016/j.colsurfb.2016.03.073

    Article  CAS  PubMed  Google Scholar 

  64. Khan MR, Fadlallah S, Gallos A et al (2023) Effect of ferulic acid derivative concentration on the release kinetics, antioxidant capacity, and thermal behaviour of different polymeric films. Food Chem 410:135395. https://doi.org/10.1016/j.foodchem.2023.135395

    Article  CAS  PubMed  Google Scholar 

  65. Cui Y, Gao S, Zhang R et al (2020) Study on the moisture absorption and thermal properties of hygroscopic exothermic fibers and related interactions with water molecules. Polym (Basel) 12:98. https://doi.org/10.3390/polym12010098

    Article  CAS  Google Scholar 

  66. Malekjani N, Jafari SM (2021) Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf 20:3–47. https://doi.org/10.1111/1541-4337.12660

    Article  CAS  PubMed  Google Scholar 

  67. Ahmed L, Atif R, Eldeen T et al (2019) Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release. Int J latest Technol Eng Manag App Sci, 2019. 8:52–56

Download references

Acknowledgements

The authors were grateful for the financial support, provided by the Prince of Songkla University (PSU), Hat Yai under the NSTDA Chair grant (P-20-52297), Prachayacharn grant (Grant no. AGR6502111N) and Fundamental fund grant (AGR650155M).

Author information

Authors and Affiliations

Authors

Contributions

Arunachalasivamani Ponnusamy: Data curation; Investigation; Methodology; Writing original draft. Bharathipriya Rajasekaran: Data curation; Investigation; Writing-review & editing. Mohamed Tagrida: Methodology; Data curation. Thummanoon Prodpran and Jun Tae Kim: Data curation; Writing-review & editing. Soottawat Benjakul: Conceptualization; Funding acquisition; Resources; Supervision; Writing-review & editing.

Corresponding author

Correspondence to Soottawat Benjakul.

Ethics declarations

Conflict of Interest

The authors have declared no conflicts of interest.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnusamy, A., Rajasekaran, B., Tagrida, M. et al. Bilayer Polylactic Acid and Chitosan/Gelatin Film Containing Epigallocatechin Gallate Prepared through Solvent Casting and Electrospinning: Properties, Bioactivities and Release Kinetics. J Polym Environ 32, 260–276 (2024). https://doi.org/10.1007/s10924-023-02998-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02998-5

Keywords

Navigation