Skip to main content
Log in

Removal of zinc (Zn2+) through biopolymer-enhanced ultrafiltration

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work presents for the first time the coupling of a biodegradable polymer, sodium lignosulfonate (SLS), with ultrafiltration to remove Zn2+ ions from model solution as well as zinc plating bath solution. SLS was first characterized using Fourier transform infrared spectroscopy to determine the functional groups of the biopolymer. Elemental analyses were performed to determine the polymer’s C, H, and S content. The effect of polymer:Zn2+ molar ratio, initial solution pH, and stirring time on Zn2+ removal was investigated. The results showed that the pH of the initial solution significantly affected the removal of Zn2+, and the maximum removal was achieved in the pH range of 3–7. Increasing the molar ratio of lignosulfonate to zinc from 5 to 30 improved the removal of Zn2+ from 72 to 90%. Furthermore, the ion exchange reaction between functional groups of lignosulfonate and Zn2+ reached equilibrium within 30 min. The presence of monovalent ions, Na+ and K+, did not affect the removal rate; however, divalent cations, Ca2+, and Mg2+ reduced the removal rate of Zn2+ from 90 to 80%. In a later stage of the work, Zn2+ was removed from zinc plating bath water sample by biopolymer-enhanced ultrafiltration. The optimum conditions were applied to the actual water sample, and 80% of Zn2+ was removed from the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. More information required is available from the corresponding author.

References

  1. Chasapis CT, Ntoupa P-SA, Spiliopoulou CA, Stefanidou ME (2020) Recent aspects of the effects of zinc on human health. Arch Toxicol 94:1443–1460. https://doi.org/10.1007/s00204-020-02702-9

    Article  CAS  PubMed  Google Scholar 

  2. Terrin G, Berni Canani R, Di Chiara M et al (2015) Zinc in early life: a key element in the fetus and preterm neonate. Nutrients 7:10427–10446. https://doi.org/10.3390/nu7125542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pae M, Meydani SN, Wu D (2012) The role of nutrition in enhancing immunity in aging. Aging Dis 3:91–129

    PubMed  Google Scholar 

  4. Dhawan DK, Chadha VD (2010) Zinc: a promising agent in dietary chemoprevention of cancer. Indian J Med Res 132:676–682

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li J, Cao D, Huang Y et al (2022) Zinc ıntakes and health outcomes: an umbrella review. Front Nutr 9. https://doi.org/10.3389/fnut.2022.798078

  6. Pluhator MM, Thomson ABR, Fedorak RN (1996) Clinical aspects of trace elements: zinc in human nutrition – zinc deficiency and toxicity. Can J Gastroenterol 10:97–103. https://doi.org/10.1155/1996/492792

    Article  Google Scholar 

  7. Mirjavadi ES, Tehrani MA, Khadir R A (2019) Effective adsorption of zinc on magnetic nanocomposite of Fe3O4/zeolite/cellulose nanofibers: kinetic, equilibrium, and thermodynamic study. Environ Sci Pollut Res 26:33478–33493. https://doi.org/10.1007/s11356-019-06165-z

    Article  CAS  Google Scholar 

  8. Ruz M, Carrasco F, Rojas P et al (2019) Nutritional effects of zinc on metabolic syndrome and type 2 diabetes: mechanisms and main findings in human studies. Biol Trace Elem Res 188:177–188. https://doi.org/10.1007/s12011-018-1611-8

    Article  CAS  PubMed  Google Scholar 

  9. Ahmadi M, Deleanu B, Ostan M et al (2016) In vivo experiments on zinc toxicity. Rev Chim 67:2015–2017

    CAS  Google Scholar 

  10. . (2003) Zinc in drinking water: background document for development of WHO Guidelines for drinking-water quality. World Heal. Organ

  11. Kumar J, Balomajumder C, Mondal P (2011) Application of agro-based biomasses for zinc removal from wastewater - A review. CLEAN - Soil Air Water 39:641–652. https://doi.org/10.1002/clen.201000100

    Article  CAS  Google Scholar 

  12. Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167:482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Veeken AHM, Akoto L, Hulshoff Pol LW, Weijma J (2003) Control of the sulfide (S2–) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res 37:3709–3717. https://doi.org/10.1016/S0043-1354(03)00262-8

    Article  CAS  PubMed  Google Scholar 

  14. Borbély G, Nagy E (2009) Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater. Desalination 240:218–226. https://doi.org/10.1016/j.desal.2007.11.073

    Article  CAS  Google Scholar 

  15. Abdullah N, Yusof N, Lau WJ et al (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38. https://doi.org/10.1016/j.jiec.2019.03.029

    Article  CAS  Google Scholar 

  16. Huang Y, Feng X (2019) Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments. J Memb Sci 586:53–83. https://doi.org/10.1016/j.memsci.2019.05.037

    Article  CAS  Google Scholar 

  17. Crini G, Morin-Crini N, Fatin-Rouge N et al (2017) Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arab J Chem 10:S3826–S3839. https://doi.org/10.1016/j.arabjc.2014.05.020

    Article  CAS  Google Scholar 

  18. Garba MD, Usman M, Mazumder MAJ et al (2019) Complexing agents for metal removal using ultrafiltration membranes: a review. Environ Chem Lett 17:1195–1208. https://doi.org/10.1007/s10311-019-00861-5

    Article  CAS  Google Scholar 

  19. Huang Y, Wu D, Wang X et al (2016) Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep Purif Technol 158:124–136. https://doi.org/10.1016/j.seppur.2015.12.008

    Article  CAS  Google Scholar 

  20. Rivas B (2003) Water-soluble polymer–metal ion interactions. Prog Polym Sci 28:173–208. https://doi.org/10.1016/S0079-6700(02)00028-X

    Article  CAS  Google Scholar 

  21. Khosa MA, Shah SS, Feng X (2014) Metal sericin complexation and ultrafiltration of heavy metals from aqueous solution. Chem Eng J 244:446–456. https://doi.org/10.1016/j.cej.2014.01.091

    Article  CAS  Google Scholar 

  22. Korus I, Bodzek M, Loska K (1999) Removal of zinc and nickel ions from aqueous solutions by means of the hybrid complexation–ultrafiltration process. Sep Purif Technol 17:111–116. https://doi.org/10.1016/S1383-5866(99)00033-7

    Article  CAS  Google Scholar 

  23. Rajesh S, Maheswari P, Senthilkumar S et al (2011) Preparation and characterisation of poly (amide-imide) incorporated cellulose acetate membranes for polymer enhanced ultrafiltration of metal ions. Chem Eng J 171:33–44. https://doi.org/10.1016/j.cej.2011.03.033

    Article  CAS  Google Scholar 

  24. Llanos J, Camarillo R, Pérez Á, Cañizares P (2010) Polymer supported ultrafiltration as a technique for selective heavy metal separation and complex formation constants prediction. Sep Purif Technol 73:126–134. https://doi.org/10.1016/j.seppur.2010.03.015

    Article  CAS  Google Scholar 

  25. Qiu Y-R, Mao L-J (2013) Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid. Desalination 329:78–85. https://doi.org/10.1016/j.desal.2013.09.012

    Article  CAS  Google Scholar 

  26. Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. Chemsuschem 10:1861–1877. https://doi.org/10.1002/cssc.201700082

    Article  CAS  PubMed  Google Scholar 

  27. Megiatto JD, Cerrutti BM, Frollini E (2016) Sodium lignosulfonate as a renewable stabilizing agent for aqueous alumina suspensions. Int J Biol Macromol 82:927–932. https://doi.org/10.1016/j.ijbiomac.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  28. Dündar OA, Arar Ö (2021) Removal of zirconium (zr) from aqueous solution by polymer enhanced ultrafiltration. J Appl Membr Sci Technol 25:15–21. https://doi.org/10.11113/amst.v25n2.211

    Article  Google Scholar 

  29. Dündar OA, Mehenktaş C, Arar Ö (2022) Removal of Antimony(III) and antimony(V) from water samples through water-soluble polymer-enhanced ultrafiltration. Environ Res 215:114324. https://doi.org/10.1016/j.envres.2022.114324

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Du JR, Zhang Y et al (2015) Removal of mercury (II) from wastewater by polyvinylamine-enhanced ultrafiltration. Sep Purif Technol 154:1–10. https://doi.org/10.1016/j.seppur.2015.09.003

    Article  CAS  Google Scholar 

  31. Rhimi A, Zlaoui K, Van der Bruggen B et al (2022) Comparative study on the effect of poly (vinylpyrrolidone) and polyethylene glycol as additives on polysulfone synthesized ultrafiltration membranes. J Chem Technol Biotechnol 97:2448–2455. https://doi.org/10.1002/jctb.7139

    Article  CAS  Google Scholar 

  32. Borsalani H, Nikzad M, Ghoreyshi AA (2022) Extraction of lignosulfonate from black liquor into construction of a magnetic lignosulfonate-based adsorbent and its adsorption properties for dyes from aqueous solutions. J Polym Environ 1–18. https://doi.org/10.1007/s10924-022-02493-3

  33. Panzarasa G, Osypova A, Ribera J et al (2018) Hybrid adsorbent materials obtained by the combination of poly(ethylene-alt-maleic anhydride) with lignin and lignosulfonate. J Polym Environ 26:4293–4302. https://doi.org/10.1007/s10924-018-1299-z

    Article  CAS  Google Scholar 

  34. Liu C, Yuan B, Guo M et al (2021) Effect of sodium lignosulfonate on bonding strength and chemical structure of a lignosulfonate/chitosan-glutaraldehyde medium-density fiberboard adhesive. Adv Compos Hybrid Mater 4:1176–1184. https://doi.org/10.1007/s42114-021-00351-9

    Article  CAS  Google Scholar 

  35. Barakat MA, Schmidt E (2010) Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256:90–93. https://doi.org/10.1016/j.desal.2010.02.008

    Article  CAS  Google Scholar 

  36. Sánchez J, Espinosa C, Pooch F et al (2018) Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration technique. React Funct Polym 127:67–73. https://doi.org/10.1016/j.reactfunctpolym.2018.04.002

    Article  CAS  Google Scholar 

  37. Korus I (2012) Galvanic wastewater treatment by means of anionic polymer enhanced ultrafiltration. Ecol Chem Eng S 19:19–27. https://doi.org/10.2478/v10216-011-0002-2

    Article  CAS  Google Scholar 

  38. Rivas BL, Moreno-Villoslada I (1998) Poly(sodium 4-styrenesulfonate)-metal ion interactions. J Appl Polym Sci 70(19981010):219–225. https://doi.org/10.1002/(SICI)1097-4628. ::AID-APP2>3.0.CO;2-X

    Article  CAS  Google Scholar 

  39. Thornton A, Pearce P, Parsons SA (2007) Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. J Hazard Mater 147:883–889. https://doi.org/10.1016/j.jhazmat.2007.01.111

    Article  CAS  PubMed  Google Scholar 

  40. Breite D, Went M, Prager A et al (2018) Charge separating microfiltration membrane with pH-dependent selectivity. Polym (Basel) 11:3. https://doi.org/10.3390/polym11010003

    Article  CAS  Google Scholar 

  41. Manawi Y, Kochkodan V, Mahmoudi E et al (2017) Characterization and separation performance of a novel polyethersulfone membrane blended with acacia gum. Sci Rep 7:15831. https://doi.org/10.1038/s41598-017-14735-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cowan S, Ritchie S (2007) Modified polyethersulfone (PES) ultrafiltration membranes for enhanced filtration of whey proteins. Sep Sci Technol 42:2405–2418. https://doi.org/10.1080/01496390701477212

    Article  CAS  Google Scholar 

  43. Rivas BL, Urbano BF, Sánchez J (2018) Water-soluble and insoluble polymers, nanoparticles, nanocomposites and hybrids with ability to remove hazardous inorganic pollutants in water. Front Chem 6:1–13. https://doi.org/10.3389/fchem.2018.00320

    Article  CAS  Google Scholar 

  44. Lin W, Zhang B, Ye X, Hawboldt K (2021) Sulfate removal using colloid-enhanced ultrafiltration: performance evaluation and adsorption studies. Environ Sci Pollut Res 28:5609–5624. https://doi.org/10.1007/s11356-020-10884-z

    Article  CAS  Google Scholar 

  45. Baharuddin NH, Sulaiman NMN, Aroua MK (2015) Removal of zinc and lead ions by polymer-enhanced ultrafiltration using unmodified starch as novel binding polymer. Int J Environ Sci Technol 12:1825–1834. https://doi.org/10.1007/s13762-014-0549-4

    Article  CAS  Google Scholar 

  46. Jellouli Ennigrou D, Ben Sik Ali M, Dhahbi M (2014) Copper and zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration. Desalination 343:82–87. https://doi.org/10.1016/j.desal.2013.11.006

    Article  CAS  Google Scholar 

  47. Kadioglu SI, Yilmaz L, Aydogan N, Onder Ozbelge H (2010) Removal of heavy metals from multicomponent metal mixtures by polymer enhanced ultrafiltration: effects of ph, ionic strength and conformational changes in polymer structure. Sep Sci Technol 45:1363–1373. https://doi.org/10.1080/01496391003674274

    Article  CAS  Google Scholar 

  48. Edward K, Dalmia M, Samuel AM et al (2021) Optimization of process conditions for the removal of zinc and lead by ultrafiltration using biopolymer. Chem Pap 75:3723–3737. https://doi.org/10.1007/s11696-021-01613-y

    Article  CAS  Google Scholar 

  49. Landaburu-Aguirre J, Pongrácz E, Perämäki P, Keiski RL (2010) Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimisation. J Hazard Mater 180:524–534. https://doi.org/10.1016/j.jhazmat.2010.04.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Likit Kimya Sanayi ve Ticaret A.Ş for providing the lignosulfonate sodium samples.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CM: Conceptualization, investigation, writing—original draft, writing—review, and editing.

ÖA: Conceptualization, resources, investigation, writing—original draft, writing—review, and editing.

Corresponding author

Correspondence to Özgür Arar.

Ethics declarations

Ethics approval

Not applicable.

Research involving human participants and/or animals

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript. Therefore, all are happy to consent to publish this work in the Journal of Polymers and the Environment, subject to peer review per the Journal of Polymers and the Environment policy.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Disclosure statement

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehenktaş, C., Arar, Ö. Removal of zinc (Zn2+) through biopolymer-enhanced ultrafiltration. J Polym Environ 31, 1373–1382 (2023). https://doi.org/10.1007/s10924-022-02686-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02686-w

Keywords

Navigation