Skip to main content
Log in

Microwave-Assisted Fabrication of a pH/Salt Responsive Hydrogel from the Micro-CMC, In Situ Polymerized Acrylamide, and Nanoγ-Fe2O3–SO3H Cross-Linked by a Phenyl Bisamide Linker for Pb2+ and Hg2+ Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Conversion of the renewable biopolymers to magnetic adsorbents is a sustainable approach for environmental concerns. Herein, the microwave-assisted micro-carboxymethylated cellulose (MCMC) with DS = 0.76, the in situ polymerized acrylamide, and nano g-Fe2O3–SO3H were fabricated in a three-dimensional hydrogel network by one-pot radical polymerization with an aromatic bis-amide cross-linker. This SO3H/phenyl implanted various methods characterized nano-composite hydrogel as a granular porous network with excellent swelling performance for the adsorption of heavy metal ions (HMIs). The results of the influences of pH, organic solvent, and salt onto the hydrogel swelling capacity (SC) showed an increase by raising the pH, a decrease in organic solvents, and a decrease in chloride salt solutions by order of Na+ < Ca2+  < Fe3+. The mechanism and kinetics of hydrogel swelling with a capacity of 60.7 g/g were consistent with the non-Fickian diffusion and Schott's second-order kinetic models. As an adsorbent, the hydrogel removed Pb2+ and Hg2+ with an adsorption capacity 91.12 mg/g and 79.64 mg/g at neutral pH 7. The adsorption isotherms of hydrogel for Pb2+ and Hg2+ were adequately fitted with the Langmuir model (R2 = 0.99). The chelation of carboxylate groups to HMIs, electrostatic interactions between the charged surface groups and HMIs, and hydrogen bonding are significant parameters of the adsorption mechanism. The successive adsorption/desorption cycles for HMIs removal offer high potential of this hydrogel for the treatment of industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Scheme 1.
Scheme 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Qasem NA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water 4(1):1–15

    Google Scholar 

  2. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17(4):1495–1521

    Article  CAS  Google Scholar 

  3. Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    Article  CAS  Google Scholar 

  4. Krabbenhoft DP, Sunderland EM (2013) Global change and mercury. Science 341(6153):1457–1458

    Article  CAS  Google Scholar 

  5. Sonmez B, Celikkol AN (2021) Pullulan based hydrogels for the removal of various metal ions from aqueous solutions. J Environ Chem Eng 9(5):106188–106196

    Article  CAS  Google Scholar 

  6. Khozemy EE, Nasef SM, Mohamed TM (2020) Radiation synthesis of superabsorbent hydrogel (wheat flour/acrylamide) for removal of mercury and lead ions from waste solutions. J Inorg Organomet Polym Mater 30(5):1669–1685

    Article  CAS  Google Scholar 

  7. Setoodehkhah M, Momeni S (2018) Water soluble schiff base functinalized Fe3O4 magnetic nano-particles as a novel adsorbent for the removal of Pb(II) and Cu(II) metal ions from aqueous solutions. J Inorg Organomet Polym Mater 28(3):1098–1106

    Article  CAS  Google Scholar 

  8. Brodkin E, Copes R, Mattman A, Kennedy J, Kling R, Yassi A (2007) Lead and mercury exposures: interpretation and action. CMAJ 176(1):59–63

    Article  Google Scholar 

  9. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20(2):351–360

    Article  CAS  Google Scholar 

  10. Gil A, Amiri MJ, Abedi-Koupai J, Eslamian S (2018) Adsorption/reduction of Hg (II) and Pb (II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions. Environ Sci Pollut Res 25(3):2814–2829

    Article  CAS  Google Scholar 

  11. Gong Y, Wang Y, Lin N, Wang R, Wang M, Zhang X (2022) Iron-based materials for simultaneous removal of heavy metal (loid) s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. Environ Pollut 299:118871–118885

    Article  CAS  Google Scholar 

  12. Shrestha R, Ban S, Devkota S, Sharma S, Joshi R, Tiwari AP, Kim HY, Joshi MK (2021) Technological trends in heavy metals removal from industrial wastewater: A review. J Environ Chem Eng 9(4):105688–105706

    Article  CAS  Google Scholar 

  13. Mansouri F, Chouchene K, Roche N, Ksibi M (2021) Removal of Pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Appl Sci 11(14):6659–6694

    Article  CAS  Google Scholar 

  14. Liu N, Dai W, Fei F, Xu H, Lei J, Quan G, Zheng Y, Zhang X, Tang L (2022) Insights into the photocatalytic activation persulfate by visible light over ReS2/MIL-88B (Fe) for highly efficient degradation of ibuprofen: Combination of experimental and theoretical study. Sep Purif Technol 297:121545–121555

    Article  CAS  Google Scholar 

  15. Tamaddon F, Nasiri A, Yazdanpanah G (2020) Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX 7:100764–100772

    Article  CAS  Google Scholar 

  16. Lin N, Gong Y, Wang R, Wang Y, Zhang X (2022) Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms. J Hazard Mater 424:127637–127661

    Article  CAS  Google Scholar 

  17. Yang Y, Li X, Jie B, Zheng Z, Li J, Zhu C, Wang S, Xu J, Zhang X (2022) Electron structure modulation and bicarbonate surrounding enhance Fenton-like reactions performance of Co-Co PBA. J Hazard Mater 437:129372–129385

    Article  CAS  Google Scholar 

  18. Langbehn RK, Michels C, Soares HM (2021) Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environ Pollut 275:116603–116619

    Article  CAS  Google Scholar 

  19. Fu Z-J, Jiang S-K, Chao X-Y, Zhang C-X, Shi Q, Wang Z-Y, Liu M-L, Sun S-P (2022) Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Res 222:118888–118897

    Article  CAS  Google Scholar 

  20. Chakraborty R, Asthana A, Singh AK, Jain B, Susan ABH (2022) Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int J Environ Anal Chem 102(2):342–379

    Article  CAS  Google Scholar 

  21. Ma L, Zhang X, Ikram M, Ullah M, Wu H, Shi K (2020) Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem Eng J 395:125216–125228

    Article  CAS  Google Scholar 

  22. Li W, Zhang L, Hu D, Yang R, Zhang J, Guan Y, Lv F, Gao H (2021) A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int J Biol Macromol 187:922–930

    Article  CAS  Google Scholar 

  23. Zhang K, Luo X, Yang L, Chang Z, Luo S (2021) Progress toward hydrogels in removing heavy metals from water: problems and solutions: a review. ACS ES&T Water 1(5):1098–1116

    Article  CAS  Google Scholar 

  24. Tamaddon F, Mosslemin MH, Asadipour A, Gharaghani MA, Nasiri A (2020) Microwave-assisted preparation of ZnFe2O4@ methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol 154:1036–1049

    Article  CAS  Google Scholar 

  25. Wu S, Guo J, Wang Y, Huang C, Hu Y (2021) Facile preparation of magnetic sodium alginate/carboxymethyl cellulose composite hydrogel for removal of heavy metal ions from aqueous solution. J Mater Sci 56(23):13096–13107

    Article  CAS  Google Scholar 

  26. Ma Q, Wang W, Ge W, Xia L, Li H, Song S (2021) Preparation of carboxymethyl cellulose-based hydrogel supported by two-dimensional montmorillonite nanosheets for methylene blue removal. J Polym Environ 29(12):3918–3931

    Article  CAS  Google Scholar 

  27. dos Santos DM, de Lacerda BA, Ascheri DPR, Signini R, de Aquino GLB (2015) Microwave-assisted carboxymethylation of cellulose extracted from brewer’s spent grain. Carbohydr Polym 131:125–133

    Article  CAS  Google Scholar 

  28. Karzar Jeddi M, Mahkam M (2019) Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int J Biol Macromol 135:829–838

    Article  CAS  Google Scholar 

  29. Godiya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38

    Article  CAS  Google Scholar 

  30. Varaprasad K, Jayaramudu T, Sadiku ER (2017) Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydr Polym 164:186–194

    Article  CAS  Google Scholar 

  31. Kaith BS, Singh A, Sharma AK, Sud D (2021) Hydrogels: synthesis, classification, properties and potential applications: a brief review. J Polym Environ 29(12):3827–3841

    Article  CAS  Google Scholar 

  32. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R (2021) Preparation of cellulose-based hydrogel: a review. J Mater Res Technol 10:935–952

    Article  CAS  Google Scholar 

  33. Mondal S, Das S, Nandi AK (2020) A review on recent advances in polymer and peptide hydrogels. Soft Matter 16(6):1404–1454

    Article  CAS  Google Scholar 

  34. Anjali J, Jose VK, Lee J-M (2019) Carbon-based hydrogels: synthesis and their recent energy applications. J Mater Chem A 7(26):15491–15518

    Article  CAS  Google Scholar 

  35. Dacrory S, Kamal KH, Kamel S (2021) EDTA-functionalized magnetic graphene oxide/polyacrylamide grafted carboxymethyl cellulose hydrogel for removal of Pb+ 2 from aqueous solution. J Polym Environ 15:1–14

    Google Scholar 

  36. Mohammadi R, Saboury A, Javanbakht S, Foroutan R, Shaabani A (2021) Carboxymethylcellulose/polyacrylic acid/starch-modified Fe3O4 interpenetrating magnetic nanocomposite hydrogel beads as pH-sensitive carrier for oral anticancer drug delivery system. Eur Polym J 153:110500–110509

    Article  CAS  Google Scholar 

  37. Lin Q, Gao M, Chang J, Ma H (2016) Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes. Carbohydr Polym 151:283–294

    Article  CAS  Google Scholar 

  38. Javanbakht S, Nabi M, Shadi M, Amini MM, Shaabani A (2021) Carboxymethyl cellulose/tetracycline@UiO-66 nanocomposite hydrogel films as a potential antibacterial wound dressing. Int J Biol Macromol 188:811–819

    Article  CAS  Google Scholar 

  39. Mohamood T, Fattima’Al-Zahara N, Abdul Halim AH, Zainuddin N, (2021) Carboxymethyl cellulose hydrogel from biomass waste of oil palm empty fruit bunch using calcium chloride as crosslinking agent. Polymers 13(23):4056–4072

    Article  Google Scholar 

  40. Capanema NSV, Mansur AAP, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS (2018) Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol 106:1218–1234

    Article  CAS  Google Scholar 

  41. Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95(1):421–427

    Article  CAS  Google Scholar 

  42. Hosseinzadeh H, Javadi A (2016) Fabrication and characterization of CMC-based magnetic superabsorbent hydrogel nanocomposites for crystal violet removal. Polym Adv Technol 27(12):1609–1616

    Article  CAS  Google Scholar 

  43. Zeng X, Zhang G, Junfeng Zhu WuZ (2022) Adsorption of heavy metal ions in water by surface functionalized magnetic composites: a review. Environ Sci: Water Res Technol 5(5):1–32

    Google Scholar 

  44. Ren J, Zhu Z, Qiu Y, Yu F, Ma J, Zhao J (2021) Magnetic field assisted adsorption of pollutants from an aqueous solution: a review. J Hazard Mater 408:124846–124857

    Article  CAS  Google Scholar 

  45. Kumar A, Kuang Y, Liang Z, Sun X (2020) Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Materials Today Nano 11:100076–100096

    Article  Google Scholar 

  46. Karmakar M, Mondal H, Ghosh NN, Chattopadhyay PK, Singha NR (2021) Synthesis of gum tragacanth-grafted pentapolymer hydrogels for As (III) exclusion: Roles of microwaves, RSM optimization, and DFT studies. Int J Biol Macromol 184:909–925

    Article  CAS  Google Scholar 

  47. Tamaddon F, Ahmadi-AhmadAbadi E, Khoje-neamah E (2022) Nano-carboxymethylcellulose, polyacrylamide, and γ-Fe2O3–SO3H cross-linked to a hydrophobic linker: an organic-inorganic hydrogel for adsorptive removal of dyes. J Mol Struct 1270:133872–133886

    Article  CAS  Google Scholar 

  48. Koukabi N, Kolvari E, Zolfigol MA, Khazaei A, Shaghasemi BS, Fasahati B (2012) A magnetic particle-supported sulfonic acid catalyst: tuning catalytic activity between homogeneous and heterogeneous catalysis. Adv Synth Catal 354(10):2001–2008

    Article  CAS  Google Scholar 

  49. Tamaddon F, Arab D, Ahmadi-AhmadAbadi E (2020) Urease immobilization on magnetic micro/nano-cellulose dialdehydes: urease inhibitory of Biginelli product in Hantzsch reaction by urea. Carbohydr Polym 229:115471–115481

    Article  CAS  Google Scholar 

  50. Tamaddon F, Kargar-Shooroki H, Jafari AA (2013) Molybdate and silica sulfuric acids as heterogeneous alternatives for synthesis of gem-bisamides and bisurides from aldehydes and amides, carbamates, nitriles or urea. J Mol Catal A 368–369:66–71

    Article  Google Scholar 

  51. Dai H, Zhang Y, Ma L, Zhang H, Huang H (2019) Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels. Carbohydr Polym 215:366–376

    Article  CAS  Google Scholar 

  52. Dai H, Huang H (2017) Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte. J Agric Food Chem 65(3):565–574

    Article  CAS  Google Scholar 

  53. Sun X-F, Xie Y, Shan S, Li W, Sun L (2022) Chemically-crosslinked xylan/graphene oxide composite hydrogel for copper ions removal. J Polym Environ 30:1–15

    Article  Google Scholar 

  54. Singha NR, Dutta A, Mahapatra M, Roy JSD, Mitra M, Deb M, Chattopadhyay PK (2019) In situ attachment of acrylamido sulfonic acid-based monomer in terpolymer hydrogel optimized by response surface methodology for individual and/or simultaneous removal (s) of M (III) and cationic dyes. ACS Omega 4(1):1763–1780

    Article  CAS  Google Scholar 

  55. Schott H (1992) Swelling kinetics of polymers. J Macromol Sci Part B 31(1):1–9

    Article  CAS  Google Scholar 

  56. Wang Y, Wang W, Shi X, Wang A (2013) Enhanced swelling and responsive properties of an alginate-based superabsorbent hydrogel by sodium p-styrenesulfonate and attapulgite nanorods. Polym Bull 70(4):1181–1193

    Article  CAS  Google Scholar 

  57. Gao T, Wang W, Wang A (2011) A pH-sensitive composite hydrogel based on sodium alginate and medical stone: synthesis, swelling, and heavy metal ions adsorption properties. Macromol Res 19(7):739–748

    Article  CAS  Google Scholar 

  58. Akl M, Ismail MA, Hashem MA, Ali DA (2021) Novel NS modified cellulose: synthesis, spectroscopic characterization and adsorption studies of Cu2+, Hg2+ and Pb2+ from environmental water samples. Res square 1:1–34

    Google Scholar 

  59. Yang S, Fu S, Liu H, Zhou Y, Li X (2011) Hydrogel beads based on carboxymethyl cellulose for removal heavy metal ions. J Appl Polym Sci 119(2):1204–1210

    Article  CAS  Google Scholar 

  60. Özkahraman B, Acar I, Emik S (2011) Removal of Cu2+ and Pb2+ ions using CMC based thermoresponsive nanocomposite hydrogel. CLEAN-Soil, Air, Water 39(7):658–664

    Article  Google Scholar 

  61. Hu Z-H, Omer AM, Ouyang Xk YuD (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb (II) from aqueous solution. Int J Biol Macromol 108:149–157

    Article  CAS  Google Scholar 

  62. Mohammed N, Baidya A, Murugesan V, Kumar AA, Ganayee MA, Mohanty JS, Tam KC, Pradeep T (2016) Diffusion-controlled simultaneous sensing and scavenging of heavy metal ions in water using atomically precise cluster–cellulose nanocrystal composites. ACS Sustain Chem Eng 4(11):6167–6176

    Article  CAS  Google Scholar 

  63. Rong L, Zhu Z, Wang B, Mao Z, Xu H, Zhang L, Zhong Y, Sui X (2018) Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg 2+ from aqueous solutions. Cellulose 25(5):3025–3035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully admit partial support of this work by the Yazd University Research Council.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FT Conceptualization, Supervision, Project administration, Methodology, Formal analysis, Data curation, Writing-review and editing. EA-A Methodology, Original draft, Conceptualization, Formal analysis, Investigation. F.T. wrote the main manuscript text and E.A. prepared figures . All authors reviewed the manuscript.

Corresponding author

Correspondence to Fatemeh Tamaddon.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaddon, F., Ahmadi-AhmadAbadi, E. Microwave-Assisted Fabrication of a pH/Salt Responsive Hydrogel from the Micro-CMC, In Situ Polymerized Acrylamide, and Nanoγ-Fe2O3–SO3H Cross-Linked by a Phenyl Bisamide Linker for Pb2+ and Hg2+ Removal. J Polym Environ 31, 461–478 (2023). https://doi.org/10.1007/s10924-022-02616-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02616-w

Keywords

Navigation