Skip to main content
Log in

In-Vitro Release of the Anticancer Agent Chlorogenic Acid Using β–Cyclodextrin/Folic Acid Functionalized Magnetic CoFe2O4/SWCNT as Magnetic Targeted Delivery Carrier: Central Composite Design Optimization Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The novelty of this work is the modified single walled carbon nanotube with magnetic CoFe2O4 nanoparticles and β-cyclodextrin/folic acid as magnetic targeted delivery carrier for controlled release of anticancer active agent (chlorogenic acid). Response surface methodology and central composite design were used to optimization of effective factors including pH, contact time, and nanoadsorbent dosage on the adsorption efficiency. The obtained results from central composite design shown that a quadratic model was suitable to fit the experimental data and maximum adsorption efficiency of 87.25% was predicted at pH 05, nanoadsorbent dosage = 0.0125 g, and contact time = 30 min. Nanoadsorbent was thoroughly characterized by Fourier transform infrared spectra, field emission scanning electron microscope, thermogeravimetric analysis, X-ray diffractometer, vibrating sample magnetometer, and Brunauer–Emmett–Teller techniques. Moreover, the adsorption isotherm and kinetic results were well described by the Langmuir and pseudo-second-order models, respectively. The adsorption thermodynamic parameters shown that the adsorption of chlorogenic acid on nanoadsorbent was spontaneous and endothermic. The chlorogenic acid shows a sustained release, and the release rate of drug from nanocarrier at pH 7.4 is remarkably higher than that at pH 5.6 due to their different release mechanisms. The release kinetic data were fitted by the Peppas-Sahlin model. Biocompatibility of the single walled carbon nanotube and nanocarrier were shown through cytotoxicity test via MTT assay on HeLa cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ANOVA:

Analysis of variance

CCD:

Central composite design

CDs:

Cyclodextrins

CF:

CoFe2O4 nanoparticles

CGA:

Chlorogenic acid

CNTs:

Carbon nanotubes

DDS:

Drug delivery systems

DDW:

Double distilled water

D-R:

Dubinin-Radushkevich

DOE:

Design of experiments

EDC:

1-Ethyl-3-(3 dimethylaminopropyl) carbodiimide

FA:

Folic acid

FR:

FA receptor

FE-SEM:

Field emission scanning electron microscope

FT-IR:

Fourier transform infrared spectra

NHS:

N-hydroxysuccinimide

SWCNTs:

Single walled carbon nanotube

TGA:

Thermogeravimetric analyzer

XRD:

X-ray diffractometer

VSM:

Vibrating sample magnetometer

References

  1. Barahuie F, Hussein MZ, Arulselvan P, Fakurazi S, Zainal Z (2014) J Solid State Chem 217:31–41

    Article  CAS  Google Scholar 

  2. Belay A, Gholap A (2009) Afr J Pure Appl Chem 3:34–240

    Google Scholar 

  3. Karimi S, Namazi H (2020) Int J Biol Macromol 156:648–659

    Article  CAS  Google Scholar 

  4. Pettinelli N, Rodríguez-Llamazares S, Farrag Y, Bouza R, Barral L, Feijoo-Bandín S, Lago F (2020) Int J Biol Macromol 146:110–118

    Article  CAS  Google Scholar 

  5. Karimidost S, Moniri E, Miralinaghi M (2019) Korean J Chem Eng 36:1115–1123

    Article  CAS  Google Scholar 

  6. Peretz SO (2012) Regev Curr Opin Colloid Interf Sci 17:360–368

    Article  CAS  Google Scholar 

  7. Kohan Hoosh Nejad A, Ahmad Panahi H, Keshmirizadeh E, Torabi Fard N (2022) Int J Polym Mater Polym Biomater 1–10

  8. Wu J, Wang X, Zhu B, He Q, Ren F, Tong F, Jiang W, He X (2022) J Biomater Sci Polym Ed 31:1057–1070

    Article  Google Scholar 

  9. Covaliu CI, Jitaru I, Paraschiv G, Vasile E, Biris SS, Diamandescu L, Valentin I, Iovu H (2013) Powder Technol 237:415–426

    Article  CAS  Google Scholar 

  10. Mushtaq MW, Kanwal F, Batool A, Jamil T, Zia-ul-Haq M (2017) J Mater Sci 52:9282–9293

    Article  CAS  Google Scholar 

  11. Venturini J, Young R, Zampiva S, Arcaro S, Bergmann CP (2018) Ceram Int 44:12381–12388

    Article  CAS  Google Scholar 

  12. Vlazan P, Stoia M (2018) Ceram Int 44:530–536

    Article  CAS  Google Scholar 

  13. Baruwati B, Nadagouda MN, Varma RS (2008) J Phys Chem C 112:18399–18404

    Article  CAS  Google Scholar 

  14. Lu LT, Dung NT, Tung LD, Thanh CT, Quy OK, Chuc NV, Maenosono S, Thanh N (2015) Nanoscale 7:19596–19610

    Article  CAS  Google Scholar 

  15. Mathew DS, Juang RS (2007) Chem Eng J 129:51–65

    Article  CAS  Google Scholar 

  16. Dippong T, Andrea Levei E, Cadar O (2021) J Nanomater 11:1560

    Article  CAS  Google Scholar 

  17. Hassanzadeh-Tabrizi SA, Norbakhsh H, Pournajaf R, Tayebi M (2021) Ceram Int 47:18167–18176

    Article  CAS  Google Scholar 

  18. Dey C, Ghosh A, Ahir M, Ghosh A, Mandal Goswami M (2018) ChemPhysChem 19:2872–2878

    Article  CAS  Google Scholar 

  19. Shi Z, Zeng Y, Chen X, Zhou F, Zheng L, Wang G, Gao J, Ma Y, Zheng L, Fu B, Yu R (2020) J Magn Magn Mater 498:166222

    Article  CAS  Google Scholar 

  20. Das M, Nariya P, Joshi A, Vohra A, Devkar R, Seshadri S, Thakore S (2020) Carbohydr Polym 247:116751

    Article  CAS  Google Scholar 

  21. Karande P, Mitragotri S (2009) Biochim Biophys Acta 1788:2362–2373

    Article  CAS  Google Scholar 

  22. Ghalehkhondabi V, Soleymani M, Fazlali A (2021) J Drug Deliv Sci Technol 61:102157

    Article  CAS  Google Scholar 

  23. Gouthamchandra K, Sudeep HV, Venkatesh BJ, Shyam Prasad K (2017) Food Sci Hum Wellness 6:147–153

    Article  Google Scholar 

  24. Rudnytsk OV, Khita OO, Minchenko DO, Tsymbal DO, Yefimova YV, Sliusar MY, Minchenko O (2021) Curr Res Toxicol 2:64–71

    Article  Google Scholar 

  25. Castillo JJ, Rindzevicius T, Novoa LV, Svendsen WE, Rozlosnik N, Boisen A, Escobar P, Mart´ıneza F, Castillo-Le´on J (2013) J Mater Chem B 1:1475

    Article  CAS  Google Scholar 

  26. Liu X, Xu D, Liao C, Fang Y, Guo B (2018) J Drug Deliv Sci Technol 43:461–468

    Article  CAS  Google Scholar 

  27. Paul R, KrishnaMitra A (2012) ISRN Optics 732067

  28. Borzooeian Z, Taslim ME, Ghasemi O, Rezvani S, Borzooeian G, Nourbakhsh A (2018) PLoS ONE 13:0197972

    Article  Google Scholar 

  29. Asgari M, Soleymani M, Miri T, Barati A (2021) Polym Adv Technol 32:4101–4109

    Article  CAS  Google Scholar 

  30. Agrawalla RK, Paul R, Sahoo PK, Chakraborty AK, Mitra AK (2014) Int J Smart Nano Mater 5:180–193

    Article  Google Scholar 

  31. Maponya TC, Ramohlola KE, Hassan Kera N, Desmond Modibane K, Maity A, Maureen Katata-Seru L, Joseph Hato M (2020) Polymers 12:679

    Article  CAS  Google Scholar 

  32. Balarak D, Mahdavi Y, Maleki A, Daraei H, Sadeghi S (2016) Br J Pharm Res 10:1–9

    Article  CAS  Google Scholar 

  33. Kuchi R, Nguyen HM, Dongquoc V, Van Cao P, Surabhi S, Yoon SG, Kim DK, Jeong JR (2018) Mater Sci Appl 215:1700989

    Google Scholar 

  34. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  35. Freundlich HMF (1906) Z Phys Chem 57:385–470

    CAS  Google Scholar 

  36. Miralinaghi P, Kashani P, Moniri E, Miralinaghi M (2019) Mater Res Express 6:065305

    Article  CAS  Google Scholar 

  37. Albadarin AB, Charara M, Tarboush BMA, Ahmad MNM, Kurniawan TA, Mu N (2017) J Mol Liq 242:478–483

    Article  CAS  Google Scholar 

  38. Suganya S, Kumar PS (2018) J Mol Liq 259:88–101

    Article  CAS  Google Scholar 

  39. Berizi Z, Hashemi SY, Hadi M, Azari A, Mahvi AH (2016) Water Sci Technol 74:1235–1242

    Article  CAS  Google Scholar 

  40. Daneshmoghanlou E, Miralinaghi M, Moniri E, Sadjady SK (2022) J Polym Environ 14:1–19

    Google Scholar 

  41. Naeimipour B, Moniri E, Vaziri Yazdi A, Safaeijavan R, Faraji H (2022) IET Nanobiotechnology 16:1–13

    Article  Google Scholar 

  42. Torabi Fard N, Tadayon F, Ahmad Panahi H, Moniri E (2022) J Mol Liq 349:118149

    Article  CAS  Google Scholar 

  43. Bhattacharyya S, Majhi S, Pada Saha B, Mukherjee PK (2014) J Photochem Photobiol B Biol 130:293–298

    Article  CAS  Google Scholar 

  44. Nallamuthu I, Devi A, Khanum F (2015) Asian J Pharm Sci 10:203–211

    Article  Google Scholar 

  45. Sani Usman M, Zobir Hussein M, Umar Kura A, Fakurazi S, Jaffri Masarudin M, Fathinul Fikri AS (2020) Mater Chem Phys 240:122232

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Islamic Azad University (Science and Research Branch) for financial support of this project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

FM: methodology, conceptualization, investigation, formal analysis, validation, writing—original draft. EM: supervision, project administration, formal analysis, validation, writing—original draft. AH: supervision, project administration, formal analysis, validation, writing—original draft. MM: project administration, formal analysis, writing—review and editing, investigation.

Corresponding author

Correspondence to Elham Moniri.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 368 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morshedi, F., Moniri, E., Heydarinasab, A. et al. In-Vitro Release of the Anticancer Agent Chlorogenic Acid Using β–Cyclodextrin/Folic Acid Functionalized Magnetic CoFe2O4/SWCNT as Magnetic Targeted Delivery Carrier: Central Composite Design Optimization Study. J Polym Environ 31, 221–237 (2023). https://doi.org/10.1007/s10924-022-02601-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02601-3

Keywords

Navigation