Skip to main content
Log in

Fabrication of GO/PAN Nanofiber Membrane Grafted with Chitosan as Efficient Adsorbent for Dye Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The adsorption is widely used to remove dyes from wastewater because of its low cost, simple preparation, and environmental friendliness. However, the existing adsorbents suffer from difficult recycling, inconvenient use, and a low regeneration rate. In this study, polyacrylonitrile (PAN) and graphene oxide (GO) was mixed for electrospinning GO/PAN nanofiber membrane and then chitosan (CS) was grafted to obtain CS-GO/PAN nanofiber membrane. CS-GO/PAN membranes were characterized with FE-SEM, EDX, FT-IR and, WCA. The effects of membrane types, dosage, solution pH on the removal of dye sunset yellow (SY) were systematically investigated. The results showed that more than 80% of SY were removed within 15 min at pH 2 using 100 mg CS-GO/PAN membrane. Adsorption kinetic data were fitted well with the pseudo-second-order model and adsorption achieved equilibrium within 240 min. The isotherm study followed the Langmuir model with the actual maximum adsorption capacity of 211.54 mg/g. After 5 adsorption–desorption cycles, the adsorption efficiency and the desorption efficiency of CS-GO/PAN were over 90% and 93%, respectively. Moreover, the membrane recovered easily from the water while its integrity was still maintained. The CS-GO/PAN membrane demonstrates the virtue of high adsorption capacity, easy operation, and good reusability, which could be considered as a promising material for adsorbing dyes in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Not applicable' for this section.

Code Availability

Not applicable' for this section.

References

  1. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5:30801–30818. https://doi.org/10.1039/c4ra16959j

    Article  CAS  Google Scholar 

  2. Piaskowski K, Swiderska-Dabrowska R, Zarzycki PK (2018) Dye removal from water and wastewater using various physical, chemical, and biological processes. J AOAC Int 101:1371–1384. https://doi.org/10.5740/jaoacint.18-0051

    Article  CAS  PubMed  Google Scholar 

  3. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng 6:4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  4. Chaibakhsh N, Ahmadi N, Zanjanchi MA (2014) Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Ind Crop Prod 61:169–175. https://doi.org/10.1016/j.indcrop.2014.06.056

    Article  CAS  Google Scholar 

  5. Yavuz Y, Shahbazi R, Koparal AS, Ogutveren UB (2014) Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods. Environ Sci Pollut Res 21:8603–8609. https://doi.org/10.1007/s11356-014-2789-8

    Article  CAS  Google Scholar 

  6. Mahmoodi NM, Taghizadeh A, Taghizadeh M, Abdi J (2019) In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.06.018

    Article  PubMed  Google Scholar 

  7. Hang G, Feng YN, Chung TS, Weber M, Maletzko C (2017) Phase inversion directly induced tight ultrafiltration (UF) hollow fiber membranes for effective removal of textile dyes. Environ Sci Technol 51:14254–14261. https://doi.org/10.1021/acs.est.7b05340

    Article  CAS  Google Scholar 

  8. Mohajershojaei K, Mahmoodi NM, Khosravi A (2015) Immobilization of laccase enzyme onto titania nanoparticle and decolorization of dyes from single and binary systems. Biotechnol Bioproc Eng 20:109–116. https://doi.org/10.1007/s12257-014-0196-0

    Article  CAS  Google Scholar 

  9. Nakhjiri MT, Marandi GB, Kurdtabar M (2019) Adsorption of methylene blue, brilliant green and rhodamine B from aqueous solution using collagen-g-p(AA-co-NVP)/Fe3O4@SiO2 nanocomposite hydrogel. J Polym Environ 27:581–599. https://doi.org/10.1007/s10924-019-01372-8

    Article  CAS  Google Scholar 

  10. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  CAS  Google Scholar 

  11. Zhou YB, Lu J, Zhou Y, Liu YD (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  12. Yan H, Wu H, Li K, Wang YW, Tao X, Yang H, Li AM, Cheng RS (2015) Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water. Acs Appl Mater Inter 7:6690–6697. https://doi.org/10.1021/acsami.5b00053

    Article  CAS  Google Scholar 

  13. Chen D, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053. https://doi.org/10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  14. Thakur K, Kandasubramanian B (2019) Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64:833–867. https://doi.org/10.1021/acs.jced.8b01057

    Article  CAS  Google Scholar 

  15. Abd-Elhamid AI, Kamoun EA, El-Shanshory AA, Soliman HMA, Aly HF (2019) Evaluation of graphene oxide-activated carbon as effective composite adsorbent toward the removal of cationic dyes: composite preparation, characterization and adsorption parameters. J Mol Liq 279:530–539. https://doi.org/10.1016/j.molliq.2019.01.162

    Article  CAS  Google Scholar 

  16. Jiao CL, Li TT, Wang J, Wang H, Zhang XL, Han XJ, Du ZF, Shang YL, Chen YY (2020) Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel. J Polym Environ 28:1492–1502. https://doi.org/10.1007/s10924-020-01702-1

    Article  CAS  Google Scholar 

  17. Xing JS, Wang XJ, Xun JJ, Peng J, Xu Q, Zhang WX, Lou T (2018) Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohydr Polym 198:69–75. https://doi.org/10.1016/j.carbpol.2018.06.064

    Article  CAS  PubMed  Google Scholar 

  18. Mahmoodi NM, Oveisi M, Taghizadeh A, Taghizadeh M (2020) Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115364

    Article  PubMed  Google Scholar 

  19. Hosseini SA, Vossoughi M, Mahmoodi NM, Sadrzadeh M (2018) Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. J Clean Prod 183:1197–1206. https://doi.org/10.1016/j.jclepro.2018.02.168

    Article  CAS  Google Scholar 

  20. Zheng XJ, Li XX, Li JY, Wang LW, Jin WJ, Liu J, Pei Y, Tang KY (2018) Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int J Biol Macromol 107:283–289. https://doi.org/10.1016/j.ijbiomac.2017.08.169

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Y, Gong JL, Zeng GM, Ou XM, Chang YN, Deng CH, Zhang J, Liu HY, Huang SY (2016) Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. Int J Biol Macromol 82:702–710. https://doi.org/10.1016/j.ijbiomac.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  22. Liao Y, Loh CH, Tian M, Wang R, Fane AG (2018) Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 77:69–94. https://doi.org/10.1016/j.progpolymsci.2017.10.003

    Article  CAS  Google Scholar 

  23. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221. https://doi.org/10.1039/b809074m

    Article  CAS  Google Scholar 

  24. Oveisi M, Mahmoodi NM, Asli MA (2019) Facile and green synthesis of metal-organic framework/inorganic nanofiber using electrospinning for recyclable visible-light photocatalysis. J Clean Prod 222:669–684. https://doi.org/10.1016/j.jclepro.2019.03.066

    Article  CAS  Google Scholar 

  25. Yang Q, Guo XX, Ye XF, Zhu HJ, Kong LX, Hou TT (2020) Functionalized polyacrylonitrile fibers with durable antibacterial activity and superior Cu(II)-removal performance. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.122755

    Article  Google Scholar 

  26. Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers A state-of-the-art review. Prog Polym Sci 37:487–513. https://doi.org/10.1016/j.progpolymsci.2011.07.001

    Article  CAS  Google Scholar 

  27. Chen C, Li FL, Guo ZH, Qu XY, Wang JT, Zhang J (2019) Preparation and performance of aminated polyacrylonitrile nanofibers for highly efficient copper ion removal. Colloid Surf A 568:334–344. https://doi.org/10.1016/j.colsurfa.2019.02.020

    Article  CAS  Google Scholar 

  28. Haider S, Binagag FF, Haider A, Al-Masry WA (2014) Electrospun oxime-grafted-polyacrylonitrile nanofiber membrane and its application to the adsorption of dyes. J Polym Res. https://doi.org/10.1007/s10965-014-0371-1

    Article  Google Scholar 

  29. Yadav A, Kumar A, Tripathi A, Das M (2013) Sunset yellow FCF, a permitted food dye, alters functional responses of splenocytes at non-cytotoxic dose. Toxicol Lett 217:197–204. https://doi.org/10.1016/j.toxlet.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  30. Mok CF, Ching YC, Muhamad F, Abu Osman NA, Hai ND, Hassan CRC (2020) Adsorption of dyes using poly(vinyl alcohol) (PVA) and PVA-based polymer composite adsorbents: a review. J Polym Environ 28:775–793. https://doi.org/10.1007/s10924-020-01656-4

    Article  CAS  Google Scholar 

  31. Li JH, Zhang H, Zhang W, Liu WL (2019) Nanofiber membrane of graphene oxide/polyacrylonitrile with highly efficient antibacterial activity. J Biomater Sci Polym Ed 30:1620–1635. https://doi.org/10.1080/09205063.2019.1652793

    Article  CAS  PubMed  Google Scholar 

  32. Naseeb N, Mohammed AA, Laoui T, Khan Z (2019) A novel PAN-GO-SiO2 hybrid membrane for separating oil and water from emulsified mixture. Materials. https://doi.org/10.3390/ma12020212

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wong TS, Ho CM (2009) Dependence of macroscopic wetting on nanoscopic surface textures. Langmuir 25:12851–12854. https://doi.org/10.1021/la902430w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326:77–95. https://doi.org/10.1016/j.desal.2013.06.016

    Article  CAS  Google Scholar 

  35. Zhao RH, Tian MW, Qu LJ, Zhao YL, Chen SJ, Zhu SF, Han GT (2019) Wet-spinning assembly of continuous and macroscopic graphene oxide/polyacrylonitrile reinforced composite fibers with enhanced mechanical properties and thermal stability. J Appl Polym Sci. https://doi.org/10.1002/app.46950

    Article  Google Scholar 

  36. Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. Rsc Adv 6:64993–65011. https://doi.org/10.1039/c6ra07626b

    Article  CAS  Google Scholar 

  37. Pei SF, Wei QW, Huang K, Cheng HM, Ren WC (2018) Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun. https://doi.org/10.1038/s41467-017-02479-z

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu WR, Xie WJ, Huang XQ, Chen X, Huang N, Wang X, Liu J (2017) The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem 221:267–277. https://doi.org/10.1016/j.foodchem.2016.10.054

    Article  CAS  PubMed  Google Scholar 

  39. Cao WB, Yue L, Wang ZP (2019) High antibacterial activity of chitosan—molybdenum disulfide nanocomposite. Carbohydr Polym 215:226–234. https://doi.org/10.1016/j.carbpol.2019.03.085

    Article  CAS  PubMed  Google Scholar 

  40. Babu J, Murthy ZVP (2017) Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Sep Purif Technol 183:66–72. https://doi.org/10.1016/j.seppur.2017.04.002

    Article  CAS  Google Scholar 

  41. Nikooe N, Saljoughi E (2017) Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Appl Surf Sci 413:41–49. https://doi.org/10.1016/j.apsusc.2017.04.029

    Article  CAS  Google Scholar 

  42. Carpio IEM, Mangadlao JD, Nguyen HN, Advincula RC, Rodrigues DF (2014) Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon 77:289–301. https://doi.org/10.1016/j.carbon.2014.05.032

    Article  CAS  Google Scholar 

  43. Stanly S, Jelmy EJ, John H (2020) Studies on modified montmorillonite clay and its PVA nanohybrid for water purification. J Polym Environ 28:2433–2443. https://doi.org/10.1007/s10924-020-01786-9

    Article  CAS  Google Scholar 

  44. Mahmoodi NM, Oveisi M, Taghizadeh A, Taghizadeh M (2019) Novel magnetic amine functionalized carbon nanotube/metal-organic framework nanocomposites: from green ultrasound-assisted synthesis to detailed selective pollutant removal modelling from binary systems. J Hazard Mater 368:746–759. https://doi.org/10.1016/j.jhazmat.2019.01.107

    Article  CAS  PubMed  Google Scholar 

  45. Zhao WF, Tang YS, Xi J, Kong J (2015) Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes. Appl Surf Sci 326:276–284. https://doi.org/10.1016/j.apsusc.2014.11.069

    Article  CAS  Google Scholar 

  46. Mahmoodi NM, Taghizadeh M, Taghizadeh A, Abdi J, Hayati B, Shekarchi AA (2019) Bio-based magnetic metal-organic framework nanocomposite: ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Appl Surf Sci 480:288–299. https://doi.org/10.1016/j.apsusc.2019.02.211

    Article  CAS  Google Scholar 

  47. Sahnoun S, Boutahala M (2018) Adsorption removal of tartrazine by chitosan/polyaniline composite: kinetics and equilibrium studies. Int J Biol Macromol 114:1345–1353. https://doi.org/10.1016/j.ijbiomac.2018.02.146

    Article  CAS  PubMed  Google Scholar 

  48. Li L, Shi ZN, Zhu HY, Hong W, Xie FW, Sun KK (2016) Adsorption of azo dyes from aqueous solution by the hybrid MOFs/GO. Water Sci Technol 73:1728–1737. https://doi.org/10.2166/wst.2016.009

    Article  CAS  PubMed  Google Scholar 

  49. Ptaszkowska-Koniarz M, Goscianska J, Pietrzak R (2017) Adsorption of dyes on the surface of polymer nanocomposites modified with methylamine and copper(II) chloride. J Colloid Interf Sci 504:549–560. https://doi.org/10.1016/j.jcis.2017.06.008

    Article  CAS  Google Scholar 

  50. Ahmad ZU, Yao LG, Wang J, Gang DD, Islam F, Lian QY, Zappi ME (2019) Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: characterizations, adsorption study and adsorption mechanism. Chem Eng J 359:814–826. https://doi.org/10.1016/j.cej.2018.11.174

    Article  CAS  Google Scholar 

  51. Coros M, Socaci C, Pruneanu S, Pogacean F, Rosu MC, Turza A, Magerusan L (2020) Thermally reduced graphene oxide as green and easily available adsorbent for Sunset yellow decontamination. Environ Res. https://doi.org/10.1016/j.envres.2019.109047

    Article  PubMed  Google Scholar 

  52. Senol ZM, Gursoy N, Simsek S, Ozer A, Karakus N (2020) Removal of food dyes from aqueous solution by chitosan-vermiculite beads. Int J Biol Macromol 148:635–646. https://doi.org/10.1016/j.ijbiomac.2020.01.166

    Article  CAS  PubMed  Google Scholar 

  53. Mirzajani R, Karimi S (2019) Ultrasonic assisted synthesis of magnetic Ni-Ag bimetallic nanoparticles supported on reduced graphene oxide for sonochemical simultaneous removal of sunset yellow and tartrazine dyes by response surface optimization: application of derivative spectrophotometry. Ultrason Sonochem 50:239–250. https://doi.org/10.1016/j.ultsonch.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  54. Makrygianni M, Lada ZG, Manousou A, Aggelopoulos CA, Deimede V (2019) Removal of anionic dyes from aqueous solution by novel pyrrolidinium-based polymeric ionic liquid (PIL) as adsorbent: investigation of the adsorption kinetics, equilibrium isotherms and the adsorption mechanisms involved. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103163

    Article  Google Scholar 

  55. Zhang MM, Zhang SX, Liu XX, Chen H, Ming YF, Xu Q, Wang ZH (2019) One-pot synthesis of multi-functional and environmental friendly tannic acid polymer with Fe3+ and formaldehyde as double crosslinking agents for selective removal of cation pollutants. Environ Sci Pollut Res 26:31834–31845. https://doi.org/10.1007/s11356-019-06297-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National College Student Innovation and Entrepreneurship Training Program (201810058053) and Tianjin Municipal College Students Innovation and Entrepreneurship Training Program (202010058042). We would like to thank the Analytical & Testing Center of Tiangong University for providing characterization facilities.

Funding

Open Access funding provided by Tiangong University.

Author information

Authors and Affiliations

Authors

Contributions

YL-designed and experimented, collected data, formal analysis, and wrote the manuscript; WZ-designed the experiment, corrected and revised the manuscript; HZ-read and revised the manuscript; JL-designed the experiment; MW-material preparation.

Corresponding authors

Correspondence to Wen Zhang or Hua Zhang.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethics Approval

Not applicable' for that section.

Consent to Participate

Not applicable' for that section.

Consent for Publication

Not applicable' for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, W., Wang, M. et al. Fabrication of GO/PAN Nanofiber Membrane Grafted with Chitosan as Efficient Adsorbent for Dye Removal. J Polym Environ 30, 2943–2954 (2022). https://doi.org/10.1007/s10924-022-02393-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02393-6

Keywords

Navigation