Skip to main content
Log in

Self-healing Ability of Epoxy Vitrimer Nanocomposites Containing Bio-Based Curing Agents and Carbon Nanotubes for Corrosion Protection

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Epoxy is extensively used for anti-corrosion coatings on metallic materials. Conventional epoxy coatings have a permanent crosslink network that is unable to repair itself when cracks and damages occur on the coating layer. This study aims to develop self-healing epoxy vitrimer/carbon nanotube (CNTs) nanocomposite for coating. Two bio-based curing agents viz., cashew nut shell liquid (CNSL) and citric acid (CA) were employed to create covalent adaptable networks. The 0–0.5 wt% CNTs were also incorporated into epoxy/CNSL/CA matrix (V-CNT0-0.5). Based on the results of our study, thermomechanical properties of V-CNT nanocomposites increased with increasing CNTs content. The bond exchange reaction of esterification was thermally activated by near infrared (NIR) light. The V-CNT0.5 showed the highest self-healing efficiency in Shore D hardness of 97.34%. The corrosion resistance of coated steel with V-CNT0 and V-CNT0.5 were observed after immersing the samples in 3.5 wt% NaCl for 7 days. The corrosion rate of coated steel with V-CNT0.5 decreased from 9.53 × 102 MPY to 3.12 × 10–5 MPY whereas an increase in protection efficiency of 99.99% was observed. By taking advantages of the superior self-healing and anti-corrosion properties, V-CNT0.5 could prove to be a desirable organic anti-corrosion coating material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Hegde MB, Nayak SR, Mohana KNS, Swamy NK (2020) Garcinia gummigutta vegetable oil-graphene oxide nano-composite: an efficient and eco-friendly material for corrosion prevention of mild steel in saline medium. J Polym Environ 28(2):483–499

    CAS  Google Scholar 

  2. Alam M, Alandis NM, Ahmad N (2020) Corn oil-derived poly (urethane-glutaric-esteramide)/fumed silica nanocomposite coatings for anticorrosive applications. J Polym Environ 28(3):1010–1020

    CAS  Google Scholar 

  3. Ataei S, Hassan A, Yahya R (2021) Dual microcapsulation of an environmentally-friendly-based reactive multifunctional acrylated epoxy resin and thiol by internal phase separation technique for self-healing applications. J Polym Environ. https://doi.org/10.1007/s10924-021-02085-7

    Article  Google Scholar 

  4. Shen W, Zhang T, Ge Y et al (2021) Multifunctional AgO/epoxy nanocomposites with enhanced mechanical, anticorrosion and bactericidal properties. Prog Org Coat 152:106130

    CAS  Google Scholar 

  5. Feng L, He X, Zhang Y et al (2021) Triple roles of thermoplastic polyurethane in toughening, accelerating and enhancing self-healing performance of thermo-reversible epoxy resins. J Polym Environ 29(3):829–836

    CAS  Google Scholar 

  6. Ye Y, Yang D, Zhang D et al (2020) POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coating. Chem Eng J 383:123160

    CAS  Google Scholar 

  7. Patil AM, Gite VV, Jirimali HD, Jagtap RN (2021) Fully biobased nanocomposites of hyperbranched-polyol and hydroxyapatite in coating applications. J Polym Environ 29(3):799–810

    CAS  Google Scholar 

  8. Zhang Y, Song P, Liu H, Li Q, Fu S (2016) Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly(ε-caprolactone)/epoxy composites. Compos Sci Technol 125:62

    CAS  Google Scholar 

  9. Li G, Zhang P, Huo S, Fu Y, Chen L, Wu Y (2021) Mechanically strong, thermally healable, and recyclable epoxy vitrimers enabled by ZnAl-layer double hydroxides. ACS Sustain Chem Eng 9:2580

    CAS  Google Scholar 

  10. Solouki Bonab V, Karimkhani V, Manas-Zloczower I (2019) Ultra-fast microwave assisted self-healing of covalent adaptive polyurethane networks with carbon nanotubes. Macromol Mater Eng 304(1):1800405

    Google Scholar 

  11. Yang X, Guo L, Xu X et al (2020) A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Mater Des 186:1–10

    Google Scholar 

  12. Denissen W, Winne JM, Du Prez FE (2016) Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci 7(1):30–38

    CAS  PubMed  Google Scholar 

  13. Jouyandeh M, Tikhani F, Hampp N et al (2020) Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings. Chem Eng J 396:125196

    CAS  Google Scholar 

  14. Kasemsiri P, Lorwanishpaisarn N, Pongsa U, Ando S (2018) Reconfigurable shape memory and self-welding properties of epoxy phenolic novolac/cashew nut shell liquid composites reinforced with carbon nanotubes. Polymers 10:482

    PubMed Central  Google Scholar 

  15. Shnawa HA (2020) Curing and thermal properties of tannin-based epoxy and its blends with commercial epoxy resin. Polym Bull 78:1–16

    Google Scholar 

  16. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf) 54(9):2199–2221

    CAS  Google Scholar 

  17. Lorwanishpaisarn N, Kasemsiri P, Jetsrisuparb K et al (2019) Dual-responsive shape memory and self-healing ability of a novel copolymer from epoxy/cashew nut shell liquid and polycaprolactone. Polym Test 81:106159

    Google Scholar 

  18. Kasemsiri P, Neramittagapong A, Chindaprasirt P (2015) Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid. Thermochim Acta 600:20–27

    CAS  Google Scholar 

  19. Lorwanishpaisarn N, Kasemsiri P, Srikhao N et al (2019) Fabrication of durable superhydrophobic epoxy/cashew nut shell liquid based coating containing flower-like zinc oxide for continuous oil/water separation. Surf Coat Technol 366:106–113

    CAS  Google Scholar 

  20. Altuna FI, Hoppe CE, Williams RJJ (2016) Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Adv 6(91):88647–88655

    CAS  Google Scholar 

  21. Xu L, Fang Z, Song P, Peng M (2010) Fuctionalization of carbon nanotubes by corona-discharge induced graft polymerization for the reinforcement of epoxy nanocomposites. Plasma Process Polym 7:785

    CAS  Google Scholar 

  22. Xu L, Fang Z, Song P, Peng M (2010) Effects of corona discharge on the surface structure, morphology and properties of multi-walled carbon nanotubes. Appl Surf Sci 21(256):6447–6453

    Google Scholar 

  23. Zhang Y, Song P, Fu S, Chen F (2015) Morphological structure and mechanical properties of epoxy/polysulfone/cellulose nanofiber ternary nanocomposites. Compos Sci Technol 115:66–71

    CAS  Google Scholar 

  24. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    CAS  Google Scholar 

  25. He X, Lin S, Feng X, Pan Q (2021) Synthesis and modification of polyurethane foam doped with multi-walled carbon nanotubes for cleaning up spilled oil from water. J Polym Environ 29(4):1271–1286

    CAS  Google Scholar 

  26. Gusmão AP, Rosenberger AG, Muniz EC et al (2020) Characterization of microfibers of carbon nanotubes obtained by electrospinning for use in electrochemical sensor. J Polym Environ 29:1–15

    Google Scholar 

  27. Deyab MA, Awadallah AE (2020) Advanced anticorrosive coatings based on epoxy/functionalized multiwall carbon nanotubes composites. Prog Org Coat 139:105423

    CAS  Google Scholar 

  28. Wang F, Zhang C, Wan X (2021) Carbon nanotubes-coated conductive elastomer: electrical and near infrared light dual-stimulated shape memory, self-healing, and wearable sensing. Ind Eng Chem Res 60(7):2954–2961

    CAS  Google Scholar 

  29. Guan Q, Dai Y, Yang Y, Bi X, Wen Z, Pan Y (2018) Nano Energy 51:333

    CAS  Google Scholar 

  30. ASTM D2240 (2010) Standard test method for rubber property , american society for testing and materials: west Conshohocken, PA

  31. Baig Z, Akram N, Zia KM et al (2020) Influence of amine-terminated additives on thermal and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) cured epoxy. J Appl Polym Sci 137(8):48404

    CAS  Google Scholar 

  32. Bai Y, Chen X (2017) A fast water-induced shape memory polymer based on hydroxyethyl cellulose/graphene oxide composites. Compos Part A Appl Sci Manuf 103:9–16

    CAS  Google Scholar 

  33. Xu S, Girouard N, Schueneman G et al (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer (Guildf) 54(24):6589–6598

    CAS  Google Scholar 

  34. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: Past, present and future developments. Prog Polym Sci 49–50:3–33

    Google Scholar 

  35. Pawar M, Kadam A, Yemul O, Thamke V (2016) Kodam K (2016) Biodegradable bioepoxy resins based on epoxidized natural oil (cottonseed & algae) cured with citric and tartaric acids through solution polymerization: A renewable approach. Ind Crops Prod 89:434

    CAS  Google Scholar 

  36. Gogoi P, Horo H, Khannam M, Dolui SK (2015) In situ synthesis of green bionanocomposites based on aqueous citric acid cured epoxidized soybean oil-carboxylic acid functionalized multiwalled carbon nanotubes. Ind Crops Prod 76:346–354

    CAS  Google Scholar 

  37. Saha S, Bal S (2017) Influence of nanotube content on the mechanical and thermo-mechanical behaviour of –COOH functionalized MWNTs/epoxy composites. Bull Mater Sci 40(5):945–956

    CAS  Google Scholar 

  38. Tan C, Zhang W, Wang Q et al (2019) Viscoelastic behavior of carboxylated multi-walled carbon nanotube reinforced epoxy composites with various frequencies. Mater Res Express 6(9):95305

    CAS  Google Scholar 

  39. Wim D, Guadalupe R, Renaud N et al (2015) Vinylogous urethane vitrimers. Adv Funct Mater 25(16):2451–2457

    Google Scholar 

  40. Niu X, Wang F, Li X et al (2019) Using Zn2+ ionomer to catalyze transesterification reaction in epoxy vitrimer. Ind Eng Chem Res 58(14):5698–5706

    CAS  Google Scholar 

  41. Zhiyan M, Yan W, Jing Z et al (2017) Bio-based epoxy vitrimers: Reprocessibility, controllable shape memory, and degradability. J Polym Sci Part A Polym Chem 55(10):1790–1799

    Google Scholar 

  42. Capelot M, Unterlass MM, Tournilhac F, Leibler L (2012) Catalytic control of the vitrimer glass transition. ACS Macro Lett 1(7):789–792

    CAS  Google Scholar 

  43. Legrand A, Soulié-Ziakovic C (2016) Silica-epoxy vitrimer nanocomposites. Macromolecules 49(16):5893–5902

    CAS  Google Scholar 

  44. Hajiali F, Tajbakhsh S, Marić M (2020) Thermally reprocessable bio-based polymethacrylate vitrimers and nanocomposites. Polymer (Guildf) 212:123126

    Google Scholar 

  45. Du W, Jin Y, Shi L, Shen Y, Lai S, Zhou Y (2020) NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Compos Part B Eng 195:108092

    CAS  Google Scholar 

  46. Amornkitbamrung L, Srisaard S, Jubsilp C et al (2020) Near-infrared light responsive shape memory polymers from bio-based benzoxazine/epoxy copolymers produced without using photothermal filler. Polym (Guildf) 209:122986

    CAS  Google Scholar 

  47. Wang H, Yang Y, Zhang M et al (2020) Electricity-triggered self-healing of conductive and thermostable vitrimer enabled by paving aligned carbon nanotubes. ACS Appl Mater Interf 12(12):14315–14322

    CAS  Google Scholar 

  48. Hassanzadeh-Aghdam MK, Ansari R (2019) Thermal conductivity of shape memory polymer nanocomposites containing carbon nanotubes: a micromechanical approach. Compos Part B Eng 162:167–177

    CAS  Google Scholar 

  49. Szatkowski P, Pielichowska K, Blazewicz S (2017) Mechanical and thermal properties of carbon-nanotube-reinforced self-healing polyurethanes. J Mater Sci 52(20):12221–12234

    CAS  Google Scholar 

  50. Zhou T, Wang X, Zhu H, Wang T (2009) Influence of carboxylic functionalization of MWCNTs on the thermal properties of MWCNTs/DGEBA/EMI-2,4 nanocomposites. Compos Part A Appl Sci Manuf 40(11):1792–1797

    Google Scholar 

  51. Guadagno L, Vertuccio L, Naddeo C et al (2020) Functional structural nanocomposites with integrated self-healing ability. Mater Today Proc 34:243–249

    Google Scholar 

  52. Thiele K, Eversmann N, Krombholz A, Pufky-Heinrich D (2019) Bio-based epoxy resins based on linseed oil cured with naturally occurring acids. Polym (Basel) 11(9):1409

    Google Scholar 

  53. Arnebold A, Wellmann S, Hartwig A (2016) Network dynamics in cationically polymerized, crosslinked epoxy resins and its influence on crystallinity and toughness. Polym (Guildf) 91:14–23

    CAS  Google Scholar 

  54. Yu YH, Lin YY, Lin CH et al (2014) High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym Chem 5(2):535–550

    CAS  Google Scholar 

  55. Kumar A, Ghosh PK, Yadav KL, Kumar K (2017) Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Compos Part B Eng 113:291–299

    CAS  Google Scholar 

  56. Yao Y, Sun H, Zhang Y, Yin Z (2020) Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers. Prog Org Coat 139:105470

    CAS  Google Scholar 

  57. Harb SV, Pulcinelli SH, Santilli CV et al (2016) A comparative study on graphene oxide and carbon nanotube reinforcement of PMMA-siloxane-silica anticorrosive coatings. ACS Appl Mater Interf 8(25):16339–16350

    CAS  Google Scholar 

  58. Shen W, Feng L, Liu X et al (2016) Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying. Prog Org Coat 90:139–146

    CAS  Google Scholar 

  59. Rui M, Zhu A (2021) The synthesis and corrosion protection mechanisms of PANI/CNT nanocomposite doped with organic phosphoric acid. Prog Org Coat 153:106134.

Download references

Acknowledgements

This work was supported by the Royal Golden Jubilee Ph.D. scholarship of the Thailand Research Fund [grant number PHD/0172/2559] and the Applied Engineering for Important Crops of the North East Research Group Khon Kaen University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornnapa Kasemsiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorwanishpaisarn, N., Srikhao, N., Jetsrisuparb, K. et al. Self-healing Ability of Epoxy Vitrimer Nanocomposites Containing Bio-Based Curing Agents and Carbon Nanotubes for Corrosion Protection. J Polym Environ 30, 472–482 (2022). https://doi.org/10.1007/s10924-021-02213-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02213-3

Keywords

Navigation