Skip to main content

Advertisement

Log in

Recent Advancement of Biopolymers and Their Potential Biomedical Applications

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recently, the advantages of biopolymers over conventional plastic polymers are unprecedented, provided that they are used in situations in which they raise the functionality and generate extra benefits for human life. Therefore, biopolymers have received much attention because they play an important place in day-to-day life for their specific tunable characteristics, making them attractive in a wide range of applications. Biopolymers can produce materials with tunable properties such as biodegradability, biocompatibility, renewability, inexpensiveness, availability, which are critically important for designing materials for use in biomedical applications. In addition to these properties, smart biopolymers could be prepared by changing the polymer components, which would create more target oriented applications. Therefore, this review interprets how biopolymers and their various forms can be potentially used in biomedical applications, including drug delivery, infections, tissue engineering, wound healings, and other as wells. Special emphasis will be provided on the applications of biopolymers in the field of drug delivery, tissue engineering, infections, and wound healing, which indicate the advancement and employment of the various biopolymers in recent biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):1–16

    Google Scholar 

  2. Rangari VK, Biswas MC, Tiimob BJ (2019) Biodegradable polymer blends for food packaging applications. In: Cruz RMS (ed) Food packaging innovations and shelf-life. CRC Press, Boca Raton, p 151

    Google Scholar 

  3. Basu P, Repanas A, Chatterjee A, Glasmacher B, NarendraKumar U, Manjubala I (2017) PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Mater Lett 195:10–13

    CAS  Google Scholar 

  4. Ren CD, Kurisawa M, Chung JE, Ying JY (2015) Liposomal delivery of horseradish peroxidase for thermally triggered injectable hyaluronic acid–tyramine hydrogel scaffolds. J Mater Chem B 3(23):4663–4670

    CAS  PubMed  Google Scholar 

  5. Hoque ME, Ghorban Daei JM, Khalid M (2018) Next generation biomimetic bone tissue engineering matrix from poly (L-lactic acid) PLA/calcium carbonate composites doped with silver nanoparticles. Curr Anal Chem 14(3):268–277

    CAS  Google Scholar 

  6. Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V (2019) Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials 9(2):164

    CAS  PubMed Central  Google Scholar 

  7. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther 12:3117

    CAS  Google Scholar 

  8. Kessler L, Gehrke S, Winnefeld M, Huber B, Hoch E, Walter T, Wyrwa R, Schnabelrauch M, Schmidt M, Kückelhaus M (2017) Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering. J Tissue Eng 8:2041731417744157

    PubMed  PubMed Central  Google Scholar 

  9. Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Balmayor ER, Tuzlakoglu K, Marques AP, Azevedo HS, Reis RL (2008) A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents. J Mater Sci Mater Med 19(4):1617–1623

    CAS  PubMed  Google Scholar 

  11. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5(1):1–16

    CAS  PubMed  Google Scholar 

  12. Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 59(4–5):249–262

    CAS  PubMed  Google Scholar 

  13. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19

    Google Scholar 

  14. Kenar H, Ozdogan CY, Dumlu C, Doger E, Kose GT, Hasirci V (2019) Microfibrous scaffolds from poly (l-lactide-co-ε-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Mater Sci Eng C 97:31–44

    CAS  Google Scholar 

  15. Velema J, Kaplan D (2006) Biopolymer-based biomaterials as scaffolds for tissue engineering. Adv Biochem Eng Biotechnol I:187–238

    Google Scholar 

  16. Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C 45:343–347

    CAS  Google Scholar 

  17. Kumar N, Desagani D, Chandran G, Ghosh NN, Karthikeyan G, Waigaonkar S, Ganguly A (2018) Biocompatible agarose-chitosan coated silver nanoparticle composite for soft tissue engineering applications. Artif Cells Nanomed Biotechnol 46(3):637–649

    CAS  PubMed  Google Scholar 

  18. Gopi S, Amalraj A, Thomas S (2016) Effective drug delivery system of biopolymers based on nanomaterials and hydrogels-a review. Drug Des 5(129):2169–0138

    Google Scholar 

  19. Davidenko N, Cameron R, Best S (2019) Natural biopolymers for biomedical applications. Elsevier, Amsterdam, pp 162–176

    Google Scholar 

  20. Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manuf 12:263–279

    Google Scholar 

  21. Rebelo R, Fernandes M, Fangueiro R (2017) Biopolymers in medical implants: a brief review. Procedia Eng 200:236–243

    CAS  Google Scholar 

  22. Sadegh-Zadeh K (2007) The fuzzy polynucleotide space revisited. Artif Intel Med 41(1):69–80

    Google Scholar 

  23. Riedel U, Nickel J (1999) Natural fibre-reinforced biopolymers as construction materials–new discoveries. Die Angew Makromol Chem 272(1):34–40

    CAS  Google Scholar 

  24. Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34(12):1261–1282

    CAS  Google Scholar 

  25. Singh AV (2011) Biopolymers in drug delivery: a review. Pharmacologyonline 1:666–674

    Google Scholar 

  26. Gombotz WR, Pettit DK (1995) Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem 6(4):332–351

    CAS  Google Scholar 

  27. Luo Y, Wang Q (2014) Zein-based micro-and nano-particles for drug and nutrient delivery: a review. J Appl Polym Sci 131(16):40696

    Google Scholar 

  28. Bajpai A, Choubey J (2005) Release study of sulphamethoxazole controlled by swelling of gelatin nanoparticles and drug-biopolymer interaction. J Macromol Sci 42(3):253–275

    Google Scholar 

  29. Liu L, Fishman ML, Hicks KB (2007) Pectin in controlled drug delivery–a review. Cellulose 14(1):15–24

    Google Scholar 

  30. Li Y, Hu M, Xiao H, Du Y, Decker EA, McClements DJ (2010) Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. Eur J Pharm Biopharm 76(1):38–47

    CAS  PubMed  Google Scholar 

  31. Jacob J, Haponiuk JT, Thomas S, Gopi S (2018) Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem 9:43–55

    CAS  Google Scholar 

  32. Bhola R, Bhola SM, Liang H, Mishra B (2010) Biocompatible denture polymers-a review. Trends Biomater Artif Organs 23(3):129–136

    Google Scholar 

  33. Shelke NB, James R, Laurencin CT, Kumbar SG (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 25(5):448–460

    CAS  Google Scholar 

  34. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    CAS  PubMed  Google Scholar 

  35. Sultana F, Manirujjaman M, Imran-Ul-Haque MA, Sharmin S (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3(8):95–105

    Google Scholar 

  36. Maiti S, Ranjit S, Sa B (2010) Polysaccharide-based graft copolymers in controlled drug delivery. Int J PharmTech Res 2(2):1350–1358

    CAS  Google Scholar 

  37. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    CAS  PubMed  Google Scholar 

  38. Janes K, Calvo P, Alonso M (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47(1):83–97

    CAS  PubMed  Google Scholar 

  39. Cui W, Li J, Decher G (2016) Self-assembled smart nanocarriers for targeted drug delivery. Adv Mater 28(6):1302–1311

    CAS  PubMed  Google Scholar 

  40. Debele TA, Mekuria SL, Tsai HC (2016) Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater Sci Eng C 68:964–981

    CAS  Google Scholar 

  41. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81(3):463–469

    PubMed  Google Scholar 

  42. Yang Y, Wang S, Wang Y, Wang X, Wang Q, Chen M (2014) Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 32(7):1301–1316

    CAS  PubMed  Google Scholar 

  43. Hu L, Sun Y, Wu Y (2013) Advances in chitosan-based drug delivery vehicles. Nanoscale 5(8):3103–3111

    CAS  PubMed  Google Scholar 

  44. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    CAS  Google Scholar 

  45. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 100(1):5–28

    CAS  PubMed  Google Scholar 

  46. Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11(12):5152–5164

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Prabaharan M, Mano J (2004) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12(1):41–57

    Google Scholar 

  48. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232

    CAS  Google Scholar 

  49. McKenzie M, Betts D, Suh A, Bui K, Kim LD, Cho H (2015) Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20(11):20397–20408

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Win PP, Shin-Ya Y, Hong K-J, Kajiuchi T (2003) Formulation and characterization of pH sensitive drug carrier based on phosphorylated chitosan (PCS). Carbohydr Polym 53(3):305–310

    CAS  Google Scholar 

  51. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34

    CAS  PubMed  Google Scholar 

  53. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    CAS  PubMed  Google Scholar 

  54. Plackett D, Letchford K, Jackson J, Burt H (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp Pap Res J 29(1):105–118

    CAS  Google Scholar 

  55. Sanga Pachuau L (2015) A mini review on plant-based nanocellulose: production, sources, modifications and its potential in drug delivery applications. Mini-reviews Med Chem 15(7):543–552

    Google Scholar 

  56. Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061

    CAS  PubMed  Google Scholar 

  57. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):41719

    Google Scholar 

  58. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76(2):431–438

    PubMed  Google Scholar 

  59. Xie J, Li J (2017) Smart drug delivery system based on nanocelluloses. J Bioresour Bioprod 2(1):1–3

    Google Scholar 

  60. Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471(1–2):45–55

    CAS  PubMed  Google Scholar 

  61. Lam E, Male KB, Chong JH, Leung AC, Luong JH (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290

    CAS  PubMed  Google Scholar 

  62. Almeida I, Pereira T, Silva N, Gomes F, Silvestre A, Freire C, Lobo JS, Costa P (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86(3):332–336

    CAS  PubMed  Google Scholar 

  63. Panduranga Rao K (1996) Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci 7(7):623–645

    Google Scholar 

  64. Takezawa T, Takeuchi T, Nitani A, Takayama Y, Kino-Oka M, Taya M, Enosawa S (2007) Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo. J Biotechnol 131(1):76–83

    CAS  PubMed  Google Scholar 

  65. Sehgal PK, Srinivasan A (2009) Collagen-coated microparticles in drug delivery. Expert Opin Drug Deliv 6(7):687–695

    CAS  PubMed  Google Scholar 

  66. Vashist A, Vashist A, Gupta Y, Ahmad S (2014) Recent advances in hydrogel-based drug delivery systems for the human body. J Mater Chem B 2(2):147–166

    CAS  PubMed  Google Scholar 

  67. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22

    CAS  PubMed  Google Scholar 

  68. Sahithi B, Ansari S, Hameeda S, Sahithya G, Prasad DM, Lakshmi Y (2013) A review on collagen based drug delivery systems. Ind J Res Pharm Biotechnol 1(3):461

    CAS  Google Scholar 

  69. Tamboli V, Patel S, Mishra GP, Mitra AK (2013) Biodegradable polymers for ophthalmic applications. In: Mitra AK (ed) Treatise on ocular drug delivery. Bentham Science, Sharjah, pp 96–113

    Google Scholar 

  70. Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski W (2002) Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 28(8):957–974

    CAS  PubMed  Google Scholar 

  71. Galaev IY, Mattiasson B (1999) ‘Smart’polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17(8):335–340

    CAS  PubMed  Google Scholar 

  72. Motornov M, Tam TK, Pita M, Tokarev I, Katz E, Minko S (2009) Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching ‘smart’drug delivery systems. Nanotechnol 20(43):434006

    Google Scholar 

  73. Bawa P, Pillay V, Choonara YE, Du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4(2):022001

    PubMed  Google Scholar 

  74. Pötzinger Y, Kralisch D, Fischer D (2017) Bacterial nanocellulose: the future of controlled drug delivery? Ther Deliv 8(9):753–761

    PubMed  Google Scholar 

  75. Xue Y, Mou Z, Xiao H (2017) Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 9(39):14758–14781

    CAS  PubMed  Google Scholar 

  76. Golieskardi M, Satgunam M, Ragurajan D, Hoque ME, Ng AMH, Shanmuganantha L (2019) Advanced 3Y-TZP bioceramic doped with Al2O3 and CeO2 potentially for biomedical implant applications. Mater Technol 34(8):480–489

    CAS  Google Scholar 

  77. Hoque ME, Chuan YL, Pashby I, Aini SS, Hwei AMN, Idrus R (2014) Hybrid and single design scaffolds for new generation tissue engineering applications. Adv Sci Eng Med 6(1):92–96

    Google Scholar 

  78. Hoque M, Prasad R (2013) Rapid prototyping technology in bone tissue engineering. J Appl Mech Eng 2:124

    Google Scholar 

  79. Collignon AM, Rochefort GY (2018) Tissue engineering strategies to promote bone repair. Mater Sci Forum 941:2495–2500

    Google Scholar 

  80. Trieu H, Sherman M (2010) Collagen-based materials and methods for treating synovial joints. Google Pat 7(731):981

    Google Scholar 

  81. Zhou X (2018) Genipin-cross-linked type II collagen scaffold promotes the differentiation of adipose-derived stem cells into nucleus pulposus-like cells. J Biomed Mater Res A 106(5):1258–1268

    CAS  PubMed  Google Scholar 

  82. Brückner T, Gbureck U (2017) Nano-magnesium phosphate hydrogels: efficiency of an injectable and biodegradable gel formulation towards bone regeneration. AME Med J 2(5):1–4

    Google Scholar 

  83. Pinese C, Gagnieu C, Nottelet B, Rondot-Couzin C, Hunger S, Coudane J, Garric X (2017) In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration. J Biomed Mater Res B 105(7):1778–1788

    CAS  Google Scholar 

  84. Silver FH, Kato YP (2019) Synthetic collagen orthopaedic structures such as grafts, tendons and other structures. Google Pat 5(171):273

    Google Scholar 

  85. Camenzind RS, Wieser K, Fessel G, Meyer DC, Snedeker JG (2016) Tendon collagen crosslinking offers potential to improve suture pullout in rotator cuff repair: an ex vivo sheep study. Clin Orthop Relat Res 474(8):1778–1785

    PubMed  PubMed Central  Google Scholar 

  86. Mozdzen LC, Rodgers R, Banks JM, Bailey RC, Harley BA (2016) Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater 33:25–33

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hadidi P, Cissell DD, Hu JC, Athanasiou KA (2017) Temporal development of near-native functional properties and correlations with qMRI in self-assembling fibrocartilage treated with exogenous lysyl oxidase homolog 2. Acta Biomater 64:29–40

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nawae S, Meesane J, Muensit N, Daengngam C (2018) Layer-by-layer self-assembled films of silk fibroin/collagen/poly (diallyldimethylammonium chloride) as nucleating surface for osseointegration to design coated dental implant materials. Mater Des 160:1158–1167

    CAS  Google Scholar 

  89. Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohydr Polym 93(1):256–262

    CAS  PubMed  Google Scholar 

  90. Babensee JE, Anderson JM, McIntire LV, Mikos AG (1998) Host response to tissue engineered devices. Adv Drug Del Rev 33(1):111–139

    CAS  Google Scholar 

  91. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    CAS  PubMed  Google Scholar 

  92. Ragurajan D, Golieskardi M, Satgunam M, Hoque ME, Ng AMH, Ghazali MJ, Ariffin AK (2018) Advanced 3Y-TZP bioceramic doped with Al2O3 and MnO2 particles potentially for biomedical applications: study on mechanical and degradation properties. J Mater Res Technol 7(4):432–442

    CAS  Google Scholar 

  93. Yu Z, An B, Ramshaw JA, Brodsky B (2014) Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 186(3):451–461

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Friess W, Schlapp M (2006) Sterilization of gentamicin containing collagen/PLGA microparticle composites. Eur J Pharm Biopharm 63(2):176–187

    CAS  PubMed  Google Scholar 

  95. Wu W, Feng X, Mao T, Feng X, Ouyang H-W, Zhao G, Chen F (2007) Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Br J Oral Maxillofac Surg 45(4):272–278

    PubMed  Google Scholar 

  96. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    CAS  Google Scholar 

  97. Chen C, Zhao ML, Zhang RK, Lu G, Zhao CY, Fu F, Sun HT, Zhang S, Tu Y, Li XH (2017) Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. J Biomed Mater Res A 105(5):1324–1332

    CAS  PubMed  Google Scholar 

  98. Ryan AJ, Lackington WA, Hibbitts AJ, Matheson A, Alekseeva T, Stejskalova A, Roche P, O’Brien FJ (2017) A physicochemically optimized and neuroconductive biphasic nerve guidance conduit for peripheral nerve repair. Adv Healthc Mater 6(24):1700954

    Google Scholar 

  99. Pawelec KM, Confalonieri D, Ehlicke F, van Boxtel HA, Walles H, Kluijtmans SG (2017) Osteogenesis and mineralization of mesenchymal stem cells in collagen type I-based recombinant peptide scaffolds. J Biomed Mater Res A 105(7):1856–1866

    CAS  PubMed  Google Scholar 

  100. Versteegden LR, Van Kampen KA, Janke HP, Tiemessen DM, Hoogenkamp HR, Hafmans TG, Roozen EA, Lomme RM, van Goor H, Oosterwijk E, Feitz WF (2017) Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater 52:1–8

    CAS  PubMed  Google Scholar 

  101. Lee JC, Pereira CT, Ren X, Huang W, Bischoff D, Weisgerber DW, Yamaguchi DT, Harley BA, Miller TA (2015) Optimizing collagen scaffolds for bone engineering: effects of cross-linking and mineral content on structural contraction and osteogenesis. J Craniofac Surg 26(6):1992

    PubMed  PubMed Central  Google Scholar 

  102. Mitra D, Yasui OW, Harvestine JN, Link JM, Hu JC, Athanasiou KA, Leach JK (2019) Exogenous lysyl oxidase-Like 2 and perfusion culture induce collagen crosslink formation in osteogenic grafts. Biotechnol J 14(3):1700763

    Google Scholar 

  103. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29(32):4314–4322

    CAS  PubMed  Google Scholar 

  104. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990

    PubMed  Google Scholar 

  105. Miroiu FM, Socol G, Visan A, Stefan N, Craciun D, Craciun V, Dorcioman G, Mihailescu IN, Sima LE, Petrescu SM, Andronie A (2010) Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation. Mater Sci Eng B 169(1–3):151–158

    CAS  Google Scholar 

  106. Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B 71(1):52–65

    Google Scholar 

  107. Sadjadi MS, Meskinfam M, Sadeghi B, Jazdarreh H, Zare K (2010) In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mater Chem Phys 124(1):217–222

    CAS  Google Scholar 

  108. Li J, Baker BA, Mou X, Ren N, Qiu J, Boughton RI, Liu H (2014) Biopolymer/calcium phosphate scaffolds for bone tissue engineering. Adv Healthc Mater 3(4):469–484

    CAS  PubMed  Google Scholar 

  109. Osorio DA, Lee BE, Kwiecien JM, Wang X, Shahid I, Hurley AL, Cranston ED, Grandfield K (2019) Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater 87:152–165

    CAS  PubMed  Google Scholar 

  110. Gleeson JP, Plunkett NA, O’Brien FJ (2010) Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater 20:218–230

    CAS  PubMed  Google Scholar 

  111. Catledge SA, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky AV, Koopman M, Vohra YK (2007) An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater 2(2):142

    CAS  PubMed  Google Scholar 

  112. Sionkowska A, Kozłowska J (2013) Properties and modification of porous 3-D collagen/hydroxyapatite composites. Int J Biol Macromol 52:250–259

    CAS  PubMed  Google Scholar 

  113. Al-Munajjed AA, Plunkett A, Gleeson JP, Weber T, Jungreuthmayer C, Levingstone T, Hammer J, O’Brien FJ (2009) Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J Biomed Mater Res B 90(2):584–591

    Google Scholar 

  114. Elkin BS, Azeloglu EU, Costa KD, Morrison B (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24(5):812–822

    PubMed  Google Scholar 

  115. Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3(3):299–306

    CAS  PubMed  Google Scholar 

  116. Yousefi AM, Hoque ME, Prasad RG, Uth N (2015) Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res A 103(7):2460–2481

    CAS  PubMed  Google Scholar 

  117. Fu W, Liu Z, Feng B, Hu R, He X, Wang H, Yin M, Huang H, Zhang H, Wang W (2014) Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomed 9:2335

    Google Scholar 

  118. Vatankhah E, Prabhakaran MP, Semnani D, Razavi S, Morshed M, Ramakrishna S (2014) Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolym 101(12):1165–1180

    CAS  Google Scholar 

  119. de Souza RF, de Souza FC, Rodrigues C, Drouin B, Popat KC, Mantovani D, Moraes ÂM (2019) Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. Mater Sci Eng C 94:364–375

    Google Scholar 

  120. Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, Scott WE III, Ferreira AM (2018) Synthesis of bioinspired collagen/alginate/fibrin-based hydrogels for soft tissue engineering. Mater Sci Eng C 91:236–246

    CAS  Google Scholar 

  121. Hasan MM, Khan MN, Haque P, Rahman MM (2018) Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration. Int J Biol Macromol 117:1110–1117

    Google Scholar 

  122. Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185

    CAS  PubMed  Google Scholar 

  123. Vieira T, Silva JC, Borges JP, Henriques C (2018) Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly (ester urethane urea) for soft tissue engineering. Eur Polym J 103:271–281

    CAS  Google Scholar 

  124. Silva R, Singh R, Sarker B, Papageorgiou DG, Juhasz-Bortuzzo JA, Roether JA, Cicha I, Kaschta J, Schubert DW, Chrissafis K, Detsch R (2018) Hydrogel matrices based on elastin and alginate for tissue engineering applications. Int J Biol Macromol 114:614–625

    CAS  PubMed  Google Scholar 

  125. Vogt L, Liverani L, Roether JA, Boccaccini AR (2018) Electrospun zein fibers incorporating poly (glycerol sebacate) for soft tissue engineering. Nanomaterials 8(3):150

    PubMed Central  Google Scholar 

  126. Little CJ, Kulyk WM, Chen X (2014) The effect of chondroitin sulphate and hyaluronic acid on chondrocytes cultured within a fibrin-alginate hydrogel. J Funct Biomater 5(3):197–210

    PubMed  PubMed Central  Google Scholar 

  127. Saadatkish N, Nouri Khorasani S, Morshed M, Allafchian AR, Beigi MH, Masoudi Rad M, Esmaeely Neisiany R, Nasr-Esfahani MH (2018) A ternary nanofibrous scaffold potential for central nerve system tissue engineering. J Biomed Mater Res A 106(9):2394–2401

    CAS  PubMed  Google Scholar 

  128. Hasan A, Waibhaw G, Saxena V (2018) Pandey LM (2018) Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 111:923–934

    CAS  PubMed  Google Scholar 

  129. Isobe N, Komamiya T, Kimura S, Kim UJ, Wada M (2018) Cellulose hydrogel with tunable shape and mechanical properties: from rigid cylinder to soft scaffold. Int J Biol Macromol 117:625–631

    CAS  PubMed  Google Scholar 

  130. Deepthi S, Jayakumar R (2018) Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering. Bioact Mater 3(2):194–200

    CAS  PubMed  Google Scholar 

  131. Hirsch T, Laemmle C, Behr B, Lehnhardt M, Jacobsen F, Hoefer D, Kueckelhaus M (2018) Implant for autologous soft tissue reconstruction using an adipose-derived stem cell-colonized alginate scaffold. J Plast Reconstr Aesthet Surg 71(1):101–111

    PubMed  Google Scholar 

  132. Xu Y, Liang K, Ullah W, Ji Y, Ma J (2018) Chitin nanocrystal enhanced wet adhesion performance of mussel-inspired citrate-based soft-tissue adhesive. Carbohydr Polym 190:324–330

    CAS  PubMed  Google Scholar 

  133. Gámiz-González M, Vidaurre A, Ribelles JG (2017) Biodegradable chitosan-poly (Ɛ-caprolactone) dialdehyde copolymer networks for soft tissue engineering. Polym Degrad Stab 138:47–54

    Google Scholar 

  134. Nikpour P, Salimi-Kenari H, Fahimipour F, Rabiee SM, Imani M, Dashtimoghadam E, Tayebi L (2018) Dextran hydrogels incorporated with bioactive glass-ceramic: nanocomposite scaffolds for bone tissue engineering. Carbohydr Polym 190:281–294

    CAS  PubMed  Google Scholar 

  135. Tamayo L, Acuña D, Riveros AL, Kogan MJ, Azocar MI, Páez M, Leal M, Urzúa M, Cerda E (2018) Porous nanogold/polyurethane scaffolds with improved antibiofilm, mechanical, and thermal properties and with reduced effects on cell viability: a suitable material for soft tissue applications. ACS Appl Mater Interface 10(16):13361–13372

    CAS  Google Scholar 

  136. Kucińska-Lipka J, Gubańska I, Janik H (2013) Gelatin-modified polyurethanes for soft tissue scaffold. Sci World J 2013:1–12

    Google Scholar 

  137. Kundu S, Das A, Basu A, Ghosh D, Datta P, Mukherjee A (2018) Carboxymethyl guar gum synthesis in homogeneous phase and macroporous 3D scaffolds design for tissue engineering. Carbohydr Polym 191:71–78

    CAS  PubMed  Google Scholar 

  138. Hoque ME, Meng TT, Chuan YL, Chowdhury M, Prasad RG (2014) Fabrication and characterization of hybrid PCL/PEG 3D scaffolds for potential tissue engineering applications. Mater Lett 131:255–258

    CAS  Google Scholar 

  139. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Kolahchi AR, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63

    CAS  PubMed  Google Scholar 

  140. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15

    CAS  PubMed  Google Scholar 

  141. Grant SA, Zhu J, Gootee J, Snider CL, Bellrichard M, Grant DA (2018) Gold nanoparticle-collagen gels for soft tissue augmentation. Tissue Eng A 24(13–14):1091–1098

    CAS  Google Scholar 

  142. Ramanathan G, Singaravelu S, Raja MD, Nagiah N, Padmapriya P, Ruban K, Kaveri K, Natarajan TS, Sivagnanam UT, Perumal PT (2016) Fabrication and characterization of a collagen coated electrospun poly (3-hydroxybutyric acid)–gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Adv 6(10):7914–7922

    CAS  Google Scholar 

  143. Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2017) Properties of collagen/chitosan scaffolds for skin tissue engineering. J Met Mater Miner 16(1):37–44

    Google Scholar 

  144. Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2(10):1800–1805

    CAS  PubMed  Google Scholar 

  145. Kumar VA, Martinez AW, Caves JM, Naik N, Haller CA, Chaikof EL (2014) Microablation of collagen-based substrates for soft tissue engineering. Biomed Mater 9(1):011002

    PubMed  PubMed Central  Google Scholar 

  146. Meghezi S, Seifu DG, Bono N, Unsworth L, Mequanint K, Mantovani D (2015) Engineering 3D cellularized collagen gels for vascular tissue regeneration. J Vis Exp 100:1–12

    Google Scholar 

  147. Long K, Liu Y, Li W, Wang L, Liu S, Wang Y, Wang Z, Ren L (2015) Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. J Biomed Mater Res A 103(3):1159–1168

    PubMed  Google Scholar 

  148. Hoque ME, Nuge T, Yeow TK, Nordin N, Prasad RG (2015) Gelatin based scaffolds for tissue engineering-a review. Polym Res J 9(1):15

    Google Scholar 

  149. Contessi Negrini N, Tarsini P, Tanzi MC, Farè S (2018) Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. J Appl Polym Sci 136(8):47104

    Google Scholar 

  150. Sharma A, Bhat S, Nayak V, Kumar A (2015) Efficacy of supermacroporous poly (ethylene glycol)–gelatin cryogel matrix for soft tissue engineering applications. Mater Sci Eng C 47:298–312

    CAS  Google Scholar 

  151. Nadim A, Khorasani SN, Kharaziha M, Davoodi SM (2017) Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Mater Sci Eng C 78:47–58

    CAS  Google Scholar 

  152. Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35(6):1845–1856

    CAS  PubMed  Google Scholar 

  153. Radaei P, Mashayekhan S, Vakilian S (2017) Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: using response surface methodology. Mater Sci Eng C 75:545–553

    CAS  Google Scholar 

  154. Dai X, Kathiria K, Huang YC (2014) Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering. Biofabrication 6(3):035005

    CAS  PubMed  Google Scholar 

  155. Pesqueira T, Costa-Almeida R, Mithieux SM, Babo PS, Franco AR, Mendes BB, Domingues RM, Freitas P, Reis RL, Gomes ME, Weiss AS (2018) Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. J Mater Chem B 6(7):1066–1075

    CAS  PubMed  Google Scholar 

  156. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromol 16(5):1489–1496

    CAS  Google Scholar 

  157. Almeida HV, Sathy BN, Dudurych I, Buckley CT, O’Brien FJ, Kelly DJ (2017) Anisotropic shape-memory alginate scaffolds functionalized with either type I or type II collagen for cartilage tissue engineering. Tissue Eng A 23(1–2):55–68

    CAS  Google Scholar 

  158. Yuan L, Wu Y, Fang J, Wei X, Gu Q, El-Hamshary H, Al-Deyab SS, Morsi Y, Mo X (2017) Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artif Cells Nanomed Biotechnol 45(1):76–83

    CAS  PubMed  Google Scholar 

  159. Jaikumar D, Sajesh KM, Soumya S, Nimal TR, Chennazhi KP, Nair SV, Jayakumar R (2015) Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 74:318–326

    CAS  PubMed  Google Scholar 

  160. Ceccaldi C, Bushkalova R, Cussac D, Duployer B, Tenailleau C, Bourin P, Parini A, Sallerin B, Fullana SG (2017) Elaboration and evaluation of alginate foam scaffolds for soft tissue engineering. Int J Pharm 524(1–2):433–442

    PubMed  Google Scholar 

  161. Yang S, Jang L, Kim S, Yang J, Yang K, Cho SW, Lee JY (2016) Polypyrrole/alginate hybrid hydrogels: electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromol Biosci 16(11):1653–1661

    CAS  PubMed  Google Scholar 

  162. Shefy-Peleg A, Foox M, Cohen B, Zilberman M (2014) Novel antibiotic-eluting gelatin-alginate soft tissue adhesives for various wound closing applications. Int J Polym Mater 63(14):699–707

    CAS  Google Scholar 

  163. Barikani M, Honarkar H, Barikani M (2009) Synthesis and characterization of polyurethane elastomers based on chitosan and poly (ε-caprolactone). J Appl Polym Sci 112(5):3157–3165

    CAS  Google Scholar 

  164. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137

    CAS  PubMed  Google Scholar 

  165. Fan M, Ma Y, Mao J, Zhang Z, Tan H (2015) Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 20:60–68

    CAS  PubMed  Google Scholar 

  166. Kanimozhi K, Basha SK, Kumari VS, Kaviyarasu K, Maaza M (2018) In vitro cytocompatibility of chitosan/PVA/methylcellulose–nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Appl Surf Sci 449:574–583

    CAS  Google Scholar 

  167. Jung KH, Huh MW, Meng W, Yuan J, Hyun SH, Bae JS, Hudson SM, Kang IK (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105(5):2816–2823

    CAS  Google Scholar 

  168. Zhou Y, Liang K, Zhao S, Zhang C, Li J, Yang H, Liu X, Yin X, Chen D, Xu W, Xiao P (2018) Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int J Biol Macromol 108:383–390

    CAS  PubMed  Google Scholar 

  169. Kamoun EA, Kenawy ERS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Pomahač B, Svensjö T, Yao F, Brown H, Eriksson E (1998) Tissue engineering of skin. Crit Rev Oral Biol Med 9(3):333–344

    PubMed  Google Scholar 

  171. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Nanomed Nanobiotechnol 2(5):510–525

    CAS  Google Scholar 

  172. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    CAS  PubMed  Google Scholar 

  173. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662

    CAS  Google Scholar 

  174. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    CAS  PubMed  Google Scholar 

  175. Korting H, Schöllmann C, White R (2011) Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J Eur Acad Dermatol Venereol 25(2):130–137

    CAS  PubMed  Google Scholar 

  176. Moore K, McCallion R, Searle RJ, Stacey MC, Harding KG (2006) Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J 3(2):89–98

    PubMed  PubMed Central  Google Scholar 

  177. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95

    CAS  Google Scholar 

  178. Harding KG, Morris HL, Patel GK (2002) Healing chronic wounds. BMJ 324(7330):160–163

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Percival NJ (2002) Classification of wounds and their management. Surg 20(5):114–117

    Google Scholar 

  180. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77(3):509–528

    CAS  PubMed  Google Scholar 

  181. Young A, McNaught CE (2011) The physiology of wound healing. Surg 29(10):475–479

    Google Scholar 

  182. Hunt TK (1988) The physiology of wound healing. Ann Emerg Med 17(12):1265–1273

    CAS  PubMed  Google Scholar 

  183. Jayakumar R, Prabaharan M, Kumar PS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337

    CAS  PubMed  Google Scholar 

  184. Smith AM, Moxn S, Morris GA (2016) Biopolymers as wound healing materials. Wound Heal Biomater. https://doi.org/10.1016/B978-1-78242-456-7.00013-1

    Article  Google Scholar 

  185. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8(9):2435–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Sahana T, Rekha P (2018) Biopolymers: applications in wound healing and skin tissue engineering. Mol Biol Rep 45(6):2857–2867

    CAS  PubMed  Google Scholar 

  187. Das N, Bera T, Mukherjee A (2012) Biomaterial hydrogels for different biomedical applications. Int J Pharm Bio Sci 3(3):586-P595

    CAS  Google Scholar 

  188. Knapp TR, Kaplan EN, Daniels JR (1977) Injectable collagen for soft tissue augmentation. Plast Reconstr Surg 60(3):398–405

    CAS  PubMed  Google Scholar 

  189. Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136

    PubMed  Google Scholar 

  190. Sailakshmi G, Mitra T, Gnanamani A, Raja ST, Thiruselvi T, Selvaraj NV, Ramesh G, Mandal AB (2011) Bonding interactions and stability assessment of biopolymer material prepared using type III collagen of avian intestine and anionic polysaccharides. J Mater Sci Mater Med 22(6):1419–1429

    CAS  PubMed  Google Scholar 

  191. Trombino S, Cassano R, Ferrarelli T, Isacchi B, Bilia AR, Picci N (2012) Collagen α-tocopherulate for topical applications: preparation, characterization, and antioxidant activity evaluation. Macromol Res 20(9):939–943

    CAS  Google Scholar 

  192. Fullana MJ, Wnek GE (2012) Electrospun collagen and its applications in regenerative medicine. Drug Deliv Transl Res 2(5):313–322

    CAS  PubMed  Google Scholar 

  193. Kempf M, Miyamura Y, Liu PY, Chen AC, Nakamura H, Shimizu H, Tabata Y, Kimble RM, McMillan JR (2011) A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials 32(21):4782–4792

    CAS  PubMed  Google Scholar 

  194. Ghica MV, Albu MG, Leca M, Popa L, Moisescu ST (2011) Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections. Pharmazie 66(11):853–861

    CAS  PubMed  Google Scholar 

  195. Roussille G, Barthet B (1991) Evaluation of a collagen-glycosaminoglycan complex as a dressing for gingival wounds. J Mater Sci Mater Med 2(4):208–211

    CAS  Google Scholar 

  196. Sedlarik KM, Schoots C, Oosterbaan JA, Klopper JP (1992) The wound healing of a full thickness wound in guinea pigs by the use of collagen sponge as a wound dressing. Aktuelle Traumatol 22(5):219–228

    CAS  PubMed  Google Scholar 

  197. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792

    CAS  Google Scholar 

  198. Blasinska A, Drobnik J (2008) Effects of nonwoven mats of Di-O-butyrylchitin and related polymers on the process of wound healing. Biomacromolecules 9(3):776–782

    CAS  PubMed  Google Scholar 

  199. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52

    CAS  PubMed  Google Scholar 

  200. Cascone MG, Maltinti S, Barbani N, Laus M (1999) Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. J Mater Sci Mater Med 10(7):431–435

    CAS  PubMed  Google Scholar 

  201. Seol YJ, Lee JY, Park YJ, Lee YM, Rhyu IC, Lee SJ, Han SB, Chung CP (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26(13):1037–1041

    CAS  PubMed  Google Scholar 

  202. Peh K, Khan T, Ch’ng H (2000) Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J Pharm Pharm Sci 3(3):303–311

    CAS  PubMed  Google Scholar 

  203. Huang XJ, Ge D, Xu JK (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43(9):3710–3718

    CAS  Google Scholar 

  204. Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao KA (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42(9):2013–2022

    CAS  Google Scholar 

  205. Jones V, Grey JE, Harding KG (2006) Wound dressings. BMJ 332(7544):777–780

    PubMed  PubMed Central  Google Scholar 

  206. Lu Y, Biswas MC, Guo Z, Jeon JW, Wujcik EK (2019) Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens Bioelectron 123:167–177

    CAS  PubMed  Google Scholar 

  207. Hernández-Ibáñez N, García-Cruz L, Montiel V, Foster CW, Banks CE, Iniesta J (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174

    PubMed  Google Scholar 

  208. Chang J, Xiao W, Liu P, Liao X, Wen Y, Bai L, Li L, Li M (2016) Carboxymethyl cellulose assisted preparation of water-processable halloysite nanotubular composites with carboxyl-functionalized multi-carbon nanotubes for simultaneous voltammetric detection of uric acid, guanine and adenine in biological samples. J Electroanal Chem 780:103–113

    CAS  Google Scholar 

  209. Crouzier T, Boudou T, Picart C (2010) Polysaccharide-based polyelectrolyte multilayers. Curr Opin Colloid Interface Sci 15(6):417–426

    CAS  Google Scholar 

  210. Eiras C, Santos AC, Zampa MF, de Brito AC, Leopoldo Constantino CJ, Zucolotto V, dos Santos JR (2010) Natural polysaccharides as active biomaterials in nanostructured films for sensing. J Biomater Sci 21(11):1533–1543

    CAS  Google Scholar 

  211. Cannatelli MD, Ragauskas AJ (2017) Two decades of laccases: advancing sustainability in the chemical industry. Chem Rec 17(1):122–140

    CAS  PubMed  Google Scholar 

  212. Sartori ER, Vicentini FC, Fatibello-Filho O (2011) Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly (allylamine hydrochloride) film. Talanta 87:235–242

    CAS  PubMed  Google Scholar 

  213. Goodman LS (1996) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 127–132

    Google Scholar 

  214. Liu X, Shuai HL, Liu YJ, Huang KJ (2016) An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-walled carbon nanotube composites and hybridization chain reaction amplification. Sens Actuators B 235:603–613

    CAS  Google Scholar 

  215. Onar N (2004) Usage of biopolymers in medical applications. In: Proc 3rd Indo-Czech Text Res Conf

  216. Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly (lactide-co-glycolide) fiber: an overview. J Eng Fiber Fabr 9(1):155892501400900100

    Google Scholar 

  217. Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013) Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 34:549–554

    CAS  Google Scholar 

  218. Shanks R, Kong I (2012) Thermoplastic Elastomers, 1st edn. Applied Sciences, RMIT University, Melbourne, pp 95–116

    Google Scholar 

  219. Panwiriyarat W (2013) Preparation and properties of bio-based polyurethane made from natural rubber and poly (Ɛ-caprolactone). Prince of Songkla University

  220. Maitz MF (2015) Applications of synthetic polymers in clinical medicine. Biosurf Biotribol 1(3):161–176

    Google Scholar 

  221. Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. Appl Nanotechnol Drug Deliv 25:257–310

    Google Scholar 

  222. Gaharwar AK, Arpanaei A, Andresen TL, Dolatshahi-Pirouz A (2016) 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends. Adv Mater 28(4):771–781

    CAS  PubMed  Google Scholar 

  223. Kikuchi M, Koyama Y, Edamura K, Irie A, Sotome S, Itoh S, Takakuda K, Shinomiya K, Tanaka S (2011) Synthesis of hydroxyapatite/collagen bone-like nanocomposite and its biological reactions. Advances in nanocomposites-synthesis, characterization and industrial applications. Adv Nanocomposites—Synth Charact Ind Appl 2:181–194

    Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MCB, MAI, RAC, MAA, and MEH contributed to the concept and design of the work. However, all the authors contributed to developing the full manuscript.

Corresponding authors

Correspondence to Md Ariful Ahsan, Md Enamul Hoque or Muhammad Ali Imam.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, M.C., Jony, B., Nandy, P.K. et al. Recent Advancement of Biopolymers and Their Potential Biomedical Applications. J Polym Environ 30, 51–74 (2022). https://doi.org/10.1007/s10924-021-02199-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02199-y

Keywords

Navigation