Skip to main content
Log in

Evaluation of Composition on Processability and Water Absorption of Wheat Gluten-Based Bioplastics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The nature of the plasticizer fraction within a bioplastic matrix is of extreme importance. Thus, brittleness has sometimes been observed when water has been used. The goal of the present manuscript has been to assess the effects of the addition of sucrose and trehalose in gluten-based bioplastics either in presence or absence of water. It was found that the role of the disaccharides in the samples studied depended on whether water was present or not in the formulation. Therefore, when water was included in the formulation together with glycerol, sugars were solubilized within the aqueous fraction, and then played a plasticizer role in the bioplastics. In that case, lower torque and temperatures during mixing, as well as lower viscoelastic properties and greater water absorption ability were generally observed in the presence of sugars. On the other hand, when no water was added, sugars acted as fillers, especially sucrose, which reinforced the blends as denoted by lower loss tangents and higher viscoelastic moduli. In this case, a microporous structure is formed after water immersion, observing smaller pore sizes in the positions previously taken by those sugars. The present manuscript highlights the importance of the procedure followed when introducing sugars in the formulation on the eventual properties of the bioplastics.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2008.0304

    Article  Google Scholar 

  2. Bioplastics E (2019) Commission’s circular economy proposal leaves room for more ambitious actions on bio-industries such as bioplastics. European bioplastics. https://www.european-bioplastics.org/commissions-circular-economy-proposal-leaves-room-for-more-ambitious-actions-on-bio-industries-such-as-bioplastics/

  3. Karana E (2012) Characterization of “natural” and “high-quality” materials to improve perception of bio-plastics. J Clean Prod. https://doi.org/10.1016/j.jclepro.2012.07.034

    Article  Google Scholar 

  4. Ashter SA (2016) Types of biodegradable polymers. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-323-39396-6.00005-1

  5. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398. https://doi.org/10.1039/c3ta12555f

    Article  CAS  Google Scholar 

  6. Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  7. Santana-Méridas O, González-Coloma A, Sánchez-Vioque R (2012) Agricultural residues as a source of bioactive natural products. Phytochem Rev 11:447–466. https://doi.org/10.1007/s11101-012-9266-0

    Article  CAS  Google Scholar 

  8. Zárate-Ramírez LS, Martínez I, Romero A et al (2011) Wheat gluten-based materials plasticised with glycerol and water by thermoplastic mixing and thermomoulding. J Sci Food Agric 91:625–633. https://doi.org/10.1002/jsfa.4224

    Article  CAS  PubMed  Google Scholar 

  9. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C 44:231–274. https://doi.org/10.1081/MC-200029326

    Article  CAS  Google Scholar 

  10. De Graaf LA (2000) Denaturation of proteins from a non-food perspective. J Biotechnol 79:299–306. https://doi.org/10.1016/s0168-1656(00)00245-5

    Article  PubMed  Google Scholar 

  11. Irissin-Mangata J, Gontard N, Bauduin G, Boutevin B (2001) New plasticizers for wheat gluten films. Eur Polym J 37:1533–1541

    Article  CAS  Google Scholar 

  12. Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73:R30–R39

    Article  CAS  Google Scholar 

  13. Ke T, Sun XS (2003) Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate. J Appl Polym Sci. https://doi.org/10.1002/app.12112

    Article  Google Scholar 

  14. Yang YY, Zhang KZ, Song YH, Zheng Q (2011) Preparation and properties of wheat gluten/rice protein composites plasticized with glycerol. Chin J Polym Sci (English Ed). https://doi.org/10.1007/s10118-010-9185-8

    Article  Google Scholar 

  15. Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem 75:1–9

    Article  CAS  Google Scholar 

  16. Pommet M, Redl A, Morel M-HH, Guilbert S (2003) Study of wheat gluten plasticization with fatty acids. Polymer (Guildf) 44:115–122. https://doi.org/10.1016/S0032-3861(02)00746-2

    Article  CAS  Google Scholar 

  17. Carvajal-Piñero JM, Ramos M, Jiménez-Rosado M et al (2019) Development of pea protein bioplastics by a thermomoulding process: effect of the mixing stage. J Polym Environ 27:968–978. https://doi.org/10.1007/s10924-019-01404-3

    Article  CAS  Google Scholar 

  18. Tunc S, Angellier H, Cahyana Y et al (2007) Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Membr Sci. https://doi.org/10.1016/j.memsci.2006.11.050

    Article  Google Scholar 

  19. Handa A, Gennadios A, Hanna MA et al (1999) Physical and molecular properties of egg-white lipid films. J Food Sci. https://doi.org/10.1111/j.1365-2621.1999.tb15928.x

    Article  Google Scholar 

  20. Kayserilioǧlu BŞ, Bakir U, Yilmaz L, Akkacs N (2003) Drying temperature and relative humidity effects on wheat gluten film properties. J Agric Food Chem 51:964–968

    Article  Google Scholar 

  21. Jerez A, Partal P, Martinez I et al (2007) Protein-based bioplastics: effect of thermo-mechanical processing. Rheol Acta 46:711–720. https://doi.org/10.1007/s00397-007-0165-z

    Article  CAS  Google Scholar 

  22. Pommet M, Redl A, Guilbert S, Morel MH (2005) Intrinsic influence of various plasticizers on functional properties and reactivity of wheat gluten thermoplastic materials. J Cereal Sci 42:81–91. https://doi.org/10.1016/j.jcs.2005.02.005

    Article  CAS  Google Scholar 

  23. Jiménez-Rosado M, Zarate-Ramírez LS, Romero A et al (2019) Bioplastics based on wheat gluten processed by extrusion. J Clean Prod 239:117994

    Article  Google Scholar 

  24. Chantapet P, Kunanopparat T, Menut P, Siriwattanayotin S (2013) Extrusion processing of wheat gluten bioplastic: effect of the addition of kraft lignin. J Polym Environ 21:864–873. https://doi.org/10.1007/s10924-012-0557-8

    Article  CAS  Google Scholar 

  25. Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016) Protein/glycerol blends and injection-molded bioplastic matrices: soybean versus egg albumen. J Appl Polym Sci. https://doi.org/10.1002/app.42980

    Article  Google Scholar 

  26. Cho S-W, Gällstedt M, Johansson E, Hedenqvist MS (2011) Injection-molded nanocomposites and materials based on wheat gluten. Int J Biol Macromol 48:146–152

    Article  CAS  Google Scholar 

  27. Felix M, Perez-Puyana V, Romero A, Guerrero A (2017) Production and characterization of bioplastics obtained by injection moulding of various protein systems. J Polym Environ 25:91–100. https://doi.org/10.1007/s10924-016-0790-7

    Article  CAS  Google Scholar 

  28. Zárate-Ramírez LS, Romero A, Bengoechea C et al (2014) Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics. Carbohydr Polym 112:24–31. https://doi.org/10.1016/j.carbpol.2014.05.055

    Article  CAS  PubMed  Google Scholar 

  29. Ashter SA (2016) Introduction to bioplastics engineering. William Andrew, Norwich

    Google Scholar 

  30. Ismail S, Mansor N, Majeed Z, Man Z (2016) Effect of water and [Emim][OAc] as plasticizer on gelatinization of starch. Proced Eng 148:524–529

    Article  CAS  Google Scholar 

  31. Tolstoguzov VB (1993) Thermoplastic extrusion-the mechanism of the formation of extrudate structure and properties. J Am Oil Chem Soc 70:417–424. https://doi.org/10.1007/BF02552717

    Article  CAS  Google Scholar 

  32. Matveev YI, Grinberg VY, Tolstoguzov VB (2000) The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocoll 14:425–437

    Article  CAS  Google Scholar 

  33. Di Gioia L, Guilbert S (1999) Corn protein-based thermoplastic resins: effect of some polar and amphiphilic plasticizers. J Agric Food Chem 47:1254–1261. https://doi.org/10.1021/jf980976j

    Article  PubMed  Google Scholar 

  34. Zárate-Ramírez LS, Romero A, Martínez I et al (2014) Effect of aldehydes on thermomechanical properties of gluten-based bioplastics. Food Bioprod Process 92:20–29. https://doi.org/10.1016/j.fbp.2013.07.007

    Article  CAS  Google Scholar 

  35. Gómez-Heincke D, Martínez I, Partal P et al (2016a) Development of antimicrobial active packaging materials based on gluten proteins. J Sci Food Agric 96:3432–3438. https://doi.org/10.1002/jsfa.7525

    Article  CAS  PubMed  Google Scholar 

  36. Jiménez-Rosado M, Pérez-Puyana V, Cordobés F et al (2018) Development of soy protein-based matrices containing zinc as micronutrient for horticulture. Ind Crops Prod 121:345–351. https://doi.org/10.1016/j.indcrop.2018.05.039

    Article  CAS  Google Scholar 

  37. Balakrishnan P, Geethamma VG, Sreekala MS, Thomas S (2018) Polymeric biomaterials: state-of-the-art and new challenges. Fundamental biomaterials: polymers. Elsevier, Amsterdam

    Google Scholar 

  38. Hosseini SF, Gómez-Guillén MC (2018) A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: special emphasis on nanotechnology-based approaches. Trends Food Sci Technol 79:125–135. https://doi.org/10.1016/j.tifs.2018.07.022

    Article  CAS  Google Scholar 

  39. Gennadios A, Brandenburg AH, Weller CL, Testin RF (1993) Effect of pH on Properties of wheat gluten and soy protein isolate films. J Agric Food Chem 41:1835–1839. https://doi.org/10.1021/jf00035a006

    Article  CAS  Google Scholar 

  40. Teixeira EM, Da Róz AL, Carvalho AJF, Curvelo AAS (2007) The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2007.01.022

    Article  Google Scholar 

  41. Sothornvit R, Krochta JM (2005) Plasticizers in edible films and coatings. Innovations in food packaging. Elsevier, Amsterdam, pp 403–433

    Chapter  Google Scholar 

  42. Álvarez-Castillo E, Ramos M, Bengoechea C et al (2020) Effect of blend mixing and formulation on thermophysical properties of gluten-based plastics. J Cereal Sci 96:103090. https://doi.org/10.1016/j.jcs.2020.103090

    Article  CAS  Google Scholar 

  43. Schwenke KD (2009) Developments in food proteins -2. Herausgegeben von B. J. F. HUDSON. 339 Seiten, 63 Abb., 85 Tab. Applied Science Publishers, London und New York 1983. Preis: 36.00 £. Food/Nahrung. https://doi.org/10.1002/food.2750270831

    Article  Google Scholar 

  44. Álvarez-Castillo E, Del Toro A, Aguilar JM et al (2018) Optimization of a thermal process for the production of superabsorbent materials based on a soy protein isolate. Ind Crops Prod 125:573–581. https://doi.org/10.1016/j.indcrop.2018.09.051

    Article  CAS  Google Scholar 

  45. D570 (1985) ASTM D 570-98—standard test method for water absorption of plastics. ASTM Stand. https://doi.org/10.1520/D0570-98

    Article  Google Scholar 

  46. Orawan J, Scoottawat B, Wonnup V et al (2006) Effect of phosphate compounds on gel-forming ability of surimi from bigeye snapper (Priacanthus tayenus). Food Hydrocoll 20:1153–1163. https://doi.org/10.1016/j.foodhyd.2005.12.007

    Article  CAS  Google Scholar 

  47. Gómez-Heincke D, Martínez I, Partal P et al (2016b) Development of antimicrobial active packaging materials based on gluten proteins. J Sci Food Agric. https://doi.org/10.1002/jsfa.7525

    Article  PubMed  Google Scholar 

  48. Redl A, Morel MH, Bonicel J et al (1999) Rheological properties of gluten plasticized with glycerol: dependence on temperature, glycerol content and mixing conditions. Rheol Acta. https://doi.org/10.1007/s003970050183

    Article  Google Scholar 

  49. Ghanbarzadeh B, Oromiehie AR, Musavi M et al (2006) Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films. Food Res Int 39:882–890. https://doi.org/10.1016/j.foodres.2006.05.011

    Article  CAS  Google Scholar 

  50. Mortain L, Dez I, Madec PJ (2004) Development of new composites materials, carriers of active agents, from biodegradable polymers and wood. Comptes Rendus Chim. https://doi.org/10.1016/j.crci.2004.03.006

    Article  Google Scholar 

  51. Kaushik JK, Bhat R (2003) Why is trehalose an exceptional protein stabilizer? J Biol Chem 278:26458–26465. https://doi.org/10.1074/jbc.M300815200

    Article  CAS  PubMed  Google Scholar 

  52. Cuadri AAA, Romero A, Bengoechea C, Guerrero A (2018) The effect of carboxyl group content on water uptake capacity and tensile properties of functionalized soy protein-based superabsorbent plastics. J Polym Environ 26:2934–2944. https://doi.org/10.1007/s10924-018-1183-x

    Article  CAS  Google Scholar 

  53. Perez-Puyana V, Felix M, Romero A, Guerrero A (2018) Development of eco-friendly biodegradable superabsorbent materials obtained by injection moulding. J Clean Prod 198:312–319. https://doi.org/10.1016/j.jclepro.2018.07.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is part of the RTI2018-097 100-B-C21 project funded by the Spanish Ministerio de Ciencia e Innovación—Agencia Estatal de Investigación (MICINN) and FEDER programme. The authors thankfully acknowledge their financial support. Finally, the authors acknowledge CITIUS (Universidad de Sevilla, Spain) for providing all the access and assistance to the Zeiss Evo microscope by the Microscopy and Microanalysis Service.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Alonso-González.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-González, M., Ramos, M., Bengoechea, C. et al. Evaluation of Composition on Processability and Water Absorption of Wheat Gluten-Based Bioplastics. J Polym Environ 29, 1434–1443 (2021). https://doi.org/10.1007/s10924-020-01969-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01969-4

Keywords

Navigation