Skip to main content
Log in

Ecofriendly Multiphase Aqueous Colloidal Based on Carboxymethylcellulose Nanoconjugates with Luminescence Properties for Potential Bioimaging Cancer Cells

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Quantum dots (QD) or semiconductor nanoparticles are within the most researched nanomaterials currently. Their attractive optical, electronic and chemical properties can be adjusted by varying composition, size, and synthesis parameters. This tunability pushes these nanocrystals into different types of applications such as biomedical and environmental ones. One of the concerns about their use regards the inherent toxicity related to the most efficient emission QD based on heavy metals. In this context, we report the synthesis of eco-friendly Ag-In-S (AIS) and Zn-Ag-In-S (ZAIS) QD conjugated with a biodegradable polymer, carboxymethylcellulose (CMC). Colloidal AIS were synthesized using an eco-friendly aqueous route at room temperature. Co-precipitation process was controlled via CMC with two degrees of substitution (DS) and under different pH conditions. In order to improve the as-prepared AIS’ optical properties, ZnS was deposited over the nanocrystals with further annealing process, creating a core/shell alloyed nanostructure. The obtained QD were extensively characterized considering their optical, physicochemical and morphological features. Results demonstrated the presence of fairly monodispersed photoluminescent nanoparticles with average size of 3.0 nm for AIS QD and 4.3 nm for ZAIS QD. Moreover, modifying the synthesis parameters, it was possible to tune and improve the emission of the fluorescent nanoparticles (λem = 500 to 900 nm). Diffraction patterns suggested the formation of solid solutions of AIS and its correspondent binary compounds. Furthermore, cellular uptake assays demonstrated a more rapid internalization of fluorescent AIS and ZAIS nanoconjugates by cancer cells when compared to normal cells. These luminescent materials showed the potential of use in a wide range of applications, such as bioimaging of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664

    CAS  PubMed  Google Scholar 

  2. Whitesides GM (2005) Small 1:172

    CAS  PubMed  Google Scholar 

  3. Shen S, Wang Q (2013) Chem Mater 25:1166

    CAS  Google Scholar 

  4. Fang M, Peng CW, Pang DW, Li Y (2012) Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med 9:151–163

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    CAS  PubMed  Google Scholar 

  6. Szopa W, Burley TA, Kramer-Marek G, Kaspera W (2017) BioMed Res Int 2017:13

    Google Scholar 

  7. Wang Y, Chen L (2011) Nanomedicine 7:385

    CAS  PubMed  Google Scholar 

  8. Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL (2016) Nature Nanotech 11:479

    CAS  Google Scholar 

  9. Rocha TL, Mestre NC, Sabóia-Morais SMT, Bebianno MJ (2017) Environ Int 98:1

    CAS  PubMed  Google Scholar 

  10. Xu G, Zeng S, Zhang B, Swihart MT, Yong K-T, Prasad PN (2016) Chem Rev 116:12234

    CAS  PubMed  Google Scholar 

  11. Javidi J, Haeri A, Kobarfard F, Dadashzadeh S (2017) J Clust Sci 28:165

    CAS  Google Scholar 

  12. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Int J Mol Sci 10:656

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen B, Pradhan N, Zhong H (2018) J Phys Chem Lett 9:435

    CAS  PubMed  Google Scholar 

  14. Kobosko SM, Kamat PV (2018) J Phys Chem C 122:14336

    CAS  Google Scholar 

  15. Bera D, Qian L, Tseng T-K, Holloway P (2010) Materials 3:2260

    CAS  PubMed Central  Google Scholar 

  16. Vasudevan D, Gaddam RR, Trinchi A, Cole I (2015) J Alloy Compd 636:395

    CAS  Google Scholar 

  17. Medeiros Borsagli FGL, Borsagli A (2019) J Polym Environ 27:1542–1556

    Google Scholar 

  18. Zheng WJ, Gao J, Wei Z, Zhou J, Chen JM (2015) Eur Polym J 72:514

    CAS  Google Scholar 

  19. Reza AT, Nicoll SB (2010) Acta Biomater 6:179

    CAS  PubMed  Google Scholar 

  20. Chang JY, Wang G-Q, Cheng C-Y, Lin W-X, Hsu J-C (2012) J Mater Chem 22:10609

    CAS  Google Scholar 

  21. Raevskaya A, Lesnyak V, Haubold D, Dzhagan V, Stroyuk O, Gaponik N, Zahn DRT, Eychmüller A (2017) J Phys Chem C 121:9032

    CAS  Google Scholar 

  22. Jagadeeswararao M, Swarnkar A, Markad GB, Nag A (2016) J Phys Chem C 120:19461

    CAS  Google Scholar 

  23. Grubbs RB (2007) Polym Rev 47:197

    CAS  Google Scholar 

  24. Donegá CM (2010) Chem Soc Rev 40:1512

    Google Scholar 

  25. Tauc J, Menth A, Non-Cryst J (1972) Solids 8:569

    Google Scholar 

  26. Uskoković V (2008) Colloids Surf B 61:250

    Google Scholar 

  27. Sunardi NM, Febriani AB (2017) Junaidi. AIP Conf Proc 1868:20008

    Google Scholar 

  28. Ivashchenko IA, Danyliuk IV, Olekseyuk ID, Pankevych VZ, Halyan VV (2015) J Solid State Chem 227:255

    CAS  Google Scholar 

  29. Sachanyuk VP, Gorgut GP, Atuchin VV, Olekseyuk ID, Parasyuk OV (2008) J Alloy Compd 452:348

    CAS  Google Scholar 

  30. Takeno N (2005) Atlas of Eh-pH diagrams, geological survey of japan open file report

  31. Hamanaka Y, Ogawa T, Tsuzuki M, Kuzuya T (2011) J Phys Chem C 115:1786

    CAS  Google Scholar 

  32. Green M (2010) J Mater Chem 20:5797

    CAS  Google Scholar 

  33. Grandhi GK, Arunkumar M, Viswanatha R (2016) J Phys Chem C 120:19785

    CAS  Google Scholar 

  34. Zhou H, Alves H, Hofmann DM, Kriegseis W, Meyer BK, Kaczmarczyk G, Hoffmann A (2002) Appl Phys Lett 80:210

    CAS  Google Scholar 

  35. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:1–12

    Google Scholar 

  36. Atlas of Eh–pH diagrams, intercomparison of thermodynamic databases, geological survey of japan open file report No. 419 2005

  37. Raucci MG, Alvarez-Perez MA, Demitri C, Giugliano D, De Benedictis V, Sannino A, Ambrosio L (2015) Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J Biomed Mater Res Part A 103A:2045–2056

    Google Scholar 

  38. Zeleňák V, Vargová Z, Györyová K (2007) Spectrochim Acta A 66:262

    Google Scholar 

  39. Sutton CCR, da Silva G, Franks GV (2015) Chem Eur J 21:6801

    CAS  PubMed  Google Scholar 

  40. Regulacio M, Win K, Lo S, Zhang S-Y, Zhang X, Wang S, Han M-Y, Zheng Y (2013) Nanoscale 5:2322

    CAS  PubMed  Google Scholar 

  41. Hamanaka Y, Ogawa T, Tsuzuki M, Ozawa K, Kuzuya T (2013) J Lumin 133:121

    CAS  Google Scholar 

  42. Mir IA, Radhakrishanan VS, Rawat K, Prasad T, Bohidar HB (2018) Sci Rep 8:9322

    PubMed  PubMed Central  Google Scholar 

  43. Kang X, Huang L, Yang Y, Pan D (2015) J Phys Chem C 119:7933

    CAS  Google Scholar 

  44. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Nat Methods 5:763

    CAS  PubMed  Google Scholar 

  45. Allen M, Bjerke M, Edlund H, Nelander S, Westermark B (2016) Sci Transl Med 8:354re3

  46. Vaidyanathan S, Orr BG, Banaszak Holl MM (2014) J Phys Chem B 118:2112

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Hajaj NA, Moquin A, Neibert KD, Soliman GM, Winnik FM, Maysinger D (2011) ACS Nano 5:4909

    CAS  PubMed  Google Scholar 

  48. Clift MJD, Brandenberger C, Rothen-Rutishauser B, Brown DM, Stone V (2011) Toxicology 286:58

    CAS  PubMed  Google Scholar 

  49. Song J, Ma C, Zhang W, Yang S, Wang S, Lv L, Zhu L, Xia R, Xu X (2016) J Mater Chem B 4:7909

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank for the assistance of Department of Chemical and Odontology of Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM).

Funding

The authors acknowledge the financial support from the following Brazilian research agencies CAPES, CNPq, FAPEMIG and FINEP. The Funding was and so funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aislan E. Paiva or Fernanda G. L. Medeiros Borsagli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, A.E., Medeiros Borsagli, F.G.L. Ecofriendly Multiphase Aqueous Colloidal Based on Carboxymethylcellulose Nanoconjugates with Luminescence Properties for Potential Bioimaging Cancer Cells. J Polym Environ 28, 3076–3096 (2020). https://doi.org/10.1007/s10924-020-01825-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01825-5

Keywords

Navigation