Skip to main content
Log in

Tailoring the Microbial Community for Improving the Biodegradation of Chitosan Films in Composting Environment

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The use of chitosan is increasing in various industries, resulting in increased generation of chitosan-containing waste. Composting is the foremost method for management of such wastes, rendering it important to understand microbial diversity and effects of microbial inoculation on biodegradation process. Here, we investigated biodegradation of chitosan films in controlled composting reactors and analyzed microbial diversity via PCR-denaturing gradient gel electrophoresis (DGGE). Then, we assessed the effects of microbial inoculation on chitosan biodegradation and monitored changes in microbial diversity in composting reactors. The dominant taxonomic groups at phylum level were Ascomycota and Proteobacteria. CO2 emission data showed high degradation rate of chitosan in reactors inoculated with Group-I microorganisms, which are capable of producing chitosanase. This result was supported by the data obtained from TG and FTIR analyses. Compared with the control reactor containing only chitosan films (without microbial inoculum), Group-I inoculant improved the efficiency of chitosan biodegradation in composting reactors, while Group-II inoculant decreased the degradation rate. We have shown that appropriate selection of microbial strains for inoculum is important for chitosan biodegradation; specifically, strains producing different subclasses of chitosanase can be included. Thus, design and optimization of microbial community used for chitosan biodegradation will increase the efficiency of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yeul VS, Rayalu SS (2012) Unprecedented chitin and chitosan: a chemical overview. J Polym Environ 21:606–614

    Google Scholar 

  2. Riaz Rajoka MS, Zhao L, Mehwish HM, Wu Y, Mahmood S (2019) Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Appl Microbiol Biotechnol 103:1557–1571

    CAS  PubMed  Google Scholar 

  3. Kumar S, Ye F, Dobretsov S, Dutta J (2019) Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl Sci 9:2409

    CAS  Google Scholar 

  4. Zhao L (2019) Oligosaccharides of chitin and chitosan: bio-manufacture and applications, 1st ed. Springer, Singapore. https://doi.org/10.1007/978-981-13-9402-7

    Book  Google Scholar 

  5. Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesaro A (2016) “The Good, the Bad and the Ugly” of chitosans. Mar Drugs 14:99

    PubMed Central  Google Scholar 

  6. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal L 182, 16/07/1999 P. 0001–0019

  7. Gorrasi G, Sorrentino A, Pantani R (2015) Modulation of biodegradation rate of poly(lactic acid) by silver nanoparticles. J Polym Environ 23:316–320

    CAS  Google Scholar 

  8. Salehpour S, Jonoobi M, Ahmadzadeh M, Siracusa V, Rafieian F, Oksman K (2018) Biodegradation and ecotoxicological impact of cellulose nanocomposites in municipal solid waste composting. Int J Biol Macromol 111:264–270

    CAS  PubMed  Google Scholar 

  9. Leceta I, Guerrero P, Cabezudo S, Caba K (2013) Environmental assessment of chitosan-based films. J Clean Prod 41:312–318

    CAS  Google Scholar 

  10. He Y, Xie K, Xu P, Huang X, Gu W, Zhang F, Tang S (2013) Evolution of microbial community diversity and enzymatic activity during composting. Res Microbiol 164:189–198

    CAS  PubMed  Google Scholar 

  11. Li H, Zhang Q, Wang XL, Ma XY, Lin KF, Liu YD, Gu JD, Lu SG, Shi L, Lu Q, Shen TT (2012) Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresour Technol 124:129–136

    CAS  PubMed  Google Scholar 

  12. Zhang X, Ge Q, Zhu Z, Deng Y, Gu J-D (2018) Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. Int Biodeter Biodegr 134:127–135

    CAS  Google Scholar 

  13. Xie X, Guo X, Zhou L, Yao Q, Zhu H (2017) Study of biochemical and microbiological properties during co-composting of spent mushroom substrates and chicken feather. Waste Biomass Valoriz 10:23–32

    Google Scholar 

  14. Yin Y, Gu J, Wang X, Song W, Zhang K, Zhang X, Lu C, Liu J (2017) Effects of chromium(III) on enzyme activities and bacterial communities during swine manure composting. Bioresour Technol 243:693–699

    CAS  PubMed  Google Scholar 

  15. Samarajeewa AD, Hammad A, Masson L, Khan IU, Scroggins R, Beaudette LA (2015) Comparative assessment of next-generation sequencing, denaturing gradient gel electrophoresis, clonal restriction fragment length polymorphism and cloning-sequencing as methods for characterizing commercial microbial consortia. J Microbiol Methods 108:103–111

    CAS  PubMed  Google Scholar 

  16. Sato K, Azama Y, Nogawa M, Taguchi G, Shimosaka M (2010) Analysis of a change in bacterial community in different environments with addition of chitin or chitosan. J Biosci Bioeng 109:472–478

    CAS  PubMed  Google Scholar 

  17. Sawaguchi A, Ono S, Oomura M, Inami K, Kumeta Y, Honda K, Sameshima-Saito R, Sakamoto K, Ando A, Saito A (2015) Chitosan degradation and associated changes in bacterial community structures in two contrasting soils. Soil Sci Plant Nutr 61:471–480

    CAS  Google Scholar 

  18. Voberkova S, Vaverkova MD, Buresova A, Adamcova D, Vrsanska M, Kynicky J, Brtnicky M, Adam V (2017) Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag 61:157–164

    PubMed  Google Scholar 

  19. Zhao Y, Lu Q, Wei Y, Cui H, Zhang X, Wang X, Shan S, Wei Z (2016) Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresour Technol 219:196–203

    CAS  PubMed  Google Scholar 

  20. Song C, Li M, Wei Z, Jia X, Xi B, Liu D, Zhu C, Pan H (2016) Effect of inoculation with multiple composite microorganisms on characteristics of humic fractions and bacterial community structure during biogas residue and livestock manure co-composting. J Chem Technol Biotechnol 91:155–164

    CAS  Google Scholar 

  21. Higa T, Wididana GN (1991) The concept and theories of effective microorganisms. Proceedings of the First International Conference on Kyusei Nature Farming, US Department of Agriculture, Washington, DC, USA, pp 118–124

  22. Jusoh ML, Manaf LA, Latiff PA (2013) Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iran J Environ Health Sci Eng 10:17

    Google Scholar 

  23. Payel S, Mukesh M, Rajni S (2011) Microbial consortium: a new approach in effective degradation of organic kitchen wastes. Int J Environ Sci Dev 2:170–174

    Google Scholar 

  24. Patidar A (2013) Potential of microbial inoculated water hyacinth amended thermophilic composting and vermicomposting in biodegradation of agro-industrial waste. J Bioremediat Biodegrad 4:2–8

    Google Scholar 

  25. Saad NFM, Ma’min NN, Zain SM, Basri NEA, Zaini NSM (2013) Composting of mixed yard and food wastes with effective microbes. J Teknol 65(2):89–95

    Google Scholar 

  26. Nair J, Okamitsu K (2010) Microbial inoculants for small scale composting of putrescible kitchen wastes. Waste Manag 30:977–982

    CAS  PubMed  Google Scholar 

  27. Fan YV, Lee CT, Klemes JJ, Chua LS, Sarmidi MR, Leow CW (2018) Evaluation of effective microorganisms on home scale organic waste composting. J Environ Manag 216:41–48

    CAS  Google Scholar 

  28. Dean K, Sangwan P, Way C, Zhang X, Martino VP, Xie F, Halley PJ, Pollet E, Avérous L (2013) Glycerol plasticised chitosan: a study of biodegradation via carbon dioxide evolution and nuclear magnetic resonance. Polym Degrad Stabil 98:1236–1246

    CAS  Google Scholar 

  29. Xie DF, Martino VP, Sangwan P, Way C, Cash GA, Pollet E, Dean KM, Halley PJ, Avérous L (2013) Elaboration and properties of plasticised chitosan-based exfoliated nano-biocomposites. Polymer 54:3654–3662

    CAS  Google Scholar 

  30. ASTM International ASTM D 5338 standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions

  31. ISO 14855-1 Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions: method by analysis of evolved carbon dioxide

  32. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  33. May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47:829–841

    CAS  PubMed  Google Scholar 

  34. Basic Local Alignment Search Tool. https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed June 2017

  35. Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144

    CAS  PubMed  Google Scholar 

  36. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A (2012) Thermovum composti gen. nov., sp. nov., an alphaproteobacterium from compost. Int J Syst Evol Microbiol 62:2991–2996

    CAS  PubMed  Google Scholar 

  37. Fenton DM, Eveleigh DE (1981) Purification and mode of action of a chitosanase from Penicillum islandicum. J Gen Microbiol 126:151–165

    CAS  Google Scholar 

  38. Rodriguez-Martin A, Acosta R, Liddell S, Nunez F, Benito MJ, Asensio MA (2010) Characterization of the novel antifungal chitosanase PgChP and the encoding gene from Penicillium chrysogenum. Appl Microbiol Biotechnol 88:519–528

    CAS  PubMed  Google Scholar 

  39. Somashekar D, Joseph R (1996) Chitosanases properties and applications: a review. Bioresour Technol 55:35–45

    CAS  Google Scholar 

  40. Sinha S, Chand S, Tripathi P (2014) Production, purification and characterization of a new chitosanase enzyme and improvement of chitosan pentamer and hexamer yield in an enzyme membrane reactor. Biocatal Biotransform 32:208–213

    CAS  Google Scholar 

  41. Jiang X, Chen D, Chen L, Yang G, Zou S (2012) Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydr Res 355:40–44

    CAS  PubMed  Google Scholar 

  42. Kammoun M, Haddar M, Kallel TK, Dammak M, Sayari A (2013) Biological properties and biodegradation studies of chitosan biofilms plasticized with PEG and glycerol. Int J Biol Macromol 62:433–438

    CAS  PubMed  Google Scholar 

  43. Nidheesh T, Gaurav Kumar P, Suresh PV (2015) Enzymatic degradation of chitosan and production of d-glucosamine by solid substrate fermentation of exo-β-d-glucosaminidase (exochitosanase) by Penicillium decumbens CFRNT15. Int Biodeter Biodegr 97:97–106

    CAS  Google Scholar 

  44. Thadathil N, Velappan SP (2014) Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem 150:392–399

    CAS  PubMed  Google Scholar 

  45. Kurek M, Brachais C-H, Nguimjeu CM, Bonnotte A, Voilley A, Galić K, Couvercelle J-P, Debeaufort F (2012) Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polym Degrad Stabil 97:1232–1240

    CAS  Google Scholar 

  46. Benito M, Masaguer A, Noliner A, Arrigo N, Palma R (2003) Chemical and microbiological parameters for characterisation of the stability and maturity of pruning waste compost. Biol Fertil Soils 37:184–189

    CAS  Google Scholar 

  47. Li H-Q, Li X-J, Wang Y-L, Zhang Q, Zhang A-L, Gao J-M, Zhang X-C (2011) Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem Syst Ecol 39:876–879

    CAS  Google Scholar 

  48. Qin JC, Zhang YM, Gao JM, Bai MS, Yang SX, Laatsch H, Zhang AL (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19:1572–1574

    CAS  PubMed  Google Scholar 

  49. Ekowati C, Hariyadi P, Witarto AB, Hwang JK, Suhartono MT (2006) Biochemical characteristics of chitosanase from the Indonesian Bacillus licheniformis MB-2. Mol Biotechnol 33:93–102

    CAS  PubMed  Google Scholar 

  50. Yabuki M, Uchiyama M, Suzuki K, Ando A, Fujii T (1988) Purification and properties of chitosanase from Bacillus circulans MH-K1. J Gen Appl Microbiol 34:255–270

    CAS  Google Scholar 

  51. Awasthi MK, Duan Y, Awasthi SK, Liu T, Zhang Z (2020) Effect of biochar and bacterial inoculum additions on cow dung composting. Bioresour Technol 297:122407

    PubMed  Google Scholar 

  52. Li W, Liu Y, Hou Q, Huang W, Zheng H, Gao X, Yu J, Kwok LY, Zhang H, Sun Z (2020) Lactobacillus plantarum improves the efficiency of sheep manure composting and the quality of the final product. Bioresour Technol 297:122456

    PubMed  Google Scholar 

  53. Wang J, Liu Z, Xia J, Chen Y (2019) Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting. Bioresour Technol 291:121843

    CAS  PubMed  Google Scholar 

  54. Nakasaki K, Araya S, Mimoto H (2013) Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresour Technol 144:521–528

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work and E.A. were supported by Scientific & Technological Research Council of Turkey (TUBITAK) [Grant Number 114Y559]. We thank the Hacettepe University HT-TTM Office for the language editing service provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulya Yavuz Ersan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 270.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altun, E., Çelik, E. & Ersan, H.Y. Tailoring the Microbial Community for Improving the Biodegradation of Chitosan Films in Composting Environment. J Polym Environ 28, 1548–1559 (2020). https://doi.org/10.1007/s10924-020-01711-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01711-0

Keywords

Navigation