Skip to main content
Log in

Simultaneous Removal of Cu(II), Cd(II), and Industrial Dye onto a Composite Chitosan Biosorbent

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The application of sustainable materials for wastewater treatment can provide a better water quality, by eliminating toxic metals and also organic contaminants. In this study, we demonstrate a simple method to synthesize chitosan/diatomaceous earth composed (CSDE) as an adsorbent for simultaneous adsorption of Amido Black 10B (AB10B), Cd(II), and Cu(II) ions from aqueous solution. The synthesis is based on a surface physical modification of diatomaceous earth by chitosan as a binder. The effects of adsorbent dosage, initial ions concentration, contact time, and pH on the AB10B, Cd(II), and Cu(II) adsorption rate were investigated. Fourier transform infrared spectroscopy confirmed the successful preparation of the CSDE. Under optimal conditions, the adsorption isotherm of AB10B, Cd(II), and Cu(II) onto CSDE fitted the Langmuir model and the adsorption kinetics was well-correlated with the pseudo-second-order model. The CSDE composite exhibited excellent adsorption capacity toward AB10B, Cd(II), and Cu(II) in both single and multicomponent system with removal capacity of 132.8 mg/g—single; 115.3 mg/g—multicomponent (pH 2), 108 mg/g—single; 96.9 mg/g—multicomponent (pH 7), and 97 mg/g—single; 88.27 mg/g—multicomponent (pH 7), respectively, suggesting selective binding capacity and high adsorption efficiency of CSDE composite. The prepared adsorbent could be reused at least ten consecutive adsorption–desorption cycles with marginal decrease in the total adsorption capacity of both metals and AB10B. The prepared adsorbents showed a significant potential for AB10B, Cd(II), and Cu(II) ions recovery in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen A, Zeng G, Chen G, Hu X, Yan M, Guan S, Xie G (2012) Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2, 4-dichlorophenol. Chem Eng J 191:85–94

    Article  CAS  Google Scholar 

  2. Zhao F, Repo E, Yin D, Chen L, Kalliola S, Tang J, Sillanpää M (2017) One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Sci Rep-UK 7(1):15811

    Article  Google Scholar 

  3. Hu P, Wang J, Huang R (2016) Simultaneous removal of Cr (VI) and Amido black 10B (AB10B) from aqueous solutions using quaternized chitosan coated bentonite. Int J Biol Macromol 92:694–701

    Article  CAS  Google Scholar 

  4. Deng JH, Zhang XR, Zeng GM, Gong JL, Niu QY, Liang J (2013) Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200

    Article  CAS  Google Scholar 

  5. Dragan ES, Humelnicu D, Dinu MV, Olariu RI (2017) Kinetics, equilibrium modeling, and thermodynamics on removal of Cr (VI) ions from aqueous solution using novel composites with strong base anion exchanger microspheres embedded into chitosan/poly(vinyl amine) cryogels. Chem Eng J 330:675–691

    Article  CAS  Google Scholar 

  6. Salih SS, Ghosh TK (2018) Highly efficient competitive removal of Pb (II) and Ni (II) by chitosan/diatomaceous earth composite. J Environ Chem Eng 6(1):435–443

    Article  CAS  Google Scholar 

  7. Nguyen ML, Huang C, Juang RS (2016) Synergistic biosorption between phenol and nickel (II) from Binary mixtures on chemically and biologically modified chitosan beads. Chem Eng J 286:68–75

    Article  CAS  Google Scholar 

  8. Petrie B, McAdam EJ, Lester JN, Cartmell E (2014) Assessing potential modifications to the activated sludge process to improve simultaneous removal of a diverse range of micropollutants. Water Res 62:180–192

    Article  CAS  Google Scholar 

  9. Wang H, Zhang P, Liu J (2017) Triethylene tetramine functionalized magnetic graphene oxide chitosan composite with superior capacity for the removal of phosphate. J Chem Eng Data 62(10):3341–3352

    Article  CAS  Google Scholar 

  10. Paduraru C, Tofan L, Teodosiu C, Bunia I, Tudorachi N, Toma O (2015) Biosorption of zinc (II) on rapeseed waste: equilibrium studies and thermogravimetric investigations. Process Saf Environ 94:18–28

    Article  CAS  Google Scholar 

  11. Salih SS, Ghosh TK (2017) Preparation and characterization of bioadsorbent beads for chromium and zinc ions adsorption. Cogent Environ Sci 3(1):1401577

    Article  Google Scholar 

  12. Roosen J, Van Roosendael S, Borra CR, Van Gerven T, Mullens S, Binnemans K (2016) Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chem 18(7):2005–2013

    Article  CAS  Google Scholar 

  13. Zhao F, Repo E, Sillanpää M, Meng Y, Yin D, Tang WZ (2015) Green synthesis of magnetic EDTA-and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Ind Eng Chem Res 54(4):1271–1281

    Article  CAS  Google Scholar 

  14. Li Z, Li T, An L, Fu P, Gao C, Zhang Z (2016) Highly efficient chromium (VI) adsorption with nanofibrous filter paper prepared through electrospinning chitosan/polymethylmethacrylate composite. Carbohydr Polym 137:119–126

    Article  CAS  Google Scholar 

  15. Martinez L, Agnely F, Leclerc B, Siepmann J, Cotte M, Geiger S, Couarraze G (2007) Cross-linking of chitosan and chitosan/poly (ethylene oxide) beads: a theoretical treatment. Eur J Pharm Biopharm 67(2):339–348

    Article  CAS  Google Scholar 

  16. Salih SS, Mahdi A, Kadhom M, Ghosh TK (2019) Competitive adsorption of As(III) and As(V) onto chitosan/diatomaceous earth adsorbent. J Environ Chem Eng 7(5):103407

    Article  Google Scholar 

  17. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A 368(1–3):13–22

    Article  CAS  Google Scholar 

  18. Batista AC, Villanueva ER, Amorim RVS, Tavares MT, Campos-Takaki GM (2011) Chromium (VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film. Molecules 16(5):3569–3579

    Article  CAS  Google Scholar 

  19. Salih SS, Ghosh TK (2018) Preparation and characterization of chitosan-coated diatomaceous earth for hexavalent chromium removal. Environ Process 5(1):23–39

    Article  CAS  Google Scholar 

  20. Salih SS, Ghosh TK (2018) Adsorption of Zn (II) ions by chitosan coated diatomaceous earth. Int J Biol Macromol 106:602–610

    Article  CAS  Google Scholar 

  21. Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853

    Article  CAS  Google Scholar 

  22. Pirilä M, Martikainen M, Ainassaari K, Kuokkanen T, Keiski RL (2011) Removal of aqueous As (III) and As (V) by hydrous titanium dioxide. J Colloid Interface Sci 353(1):257–262

    Article  Google Scholar 

  23. Tanzifi M, Mansouri M, Heidarzadeh M, Gheibi K (2016) Study of the adsorption of amido black 10B dye from aqueous solution using polyaniline nano-adsorbent: kinetic and isotherm studies. J Water Environ Nanotechnol 1(2):124–134

    Google Scholar 

  24. Wang Y, Xia G, Wu C, Sun J, Song R, Huang W (2015) Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10. Carbohydr Polym 115:686–693

    Article  CAS  Google Scholar 

  25. Tanzifi M, Yaraki MT, Kiadehi AD, Hosseini SH, Olazar M, Bharti AK, Kazemi A (2018) Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modeling. J Colloid Interface Sci 510:246–261

    Article  CAS  Google Scholar 

  26. Lee SM, Laldawngliana C, Tiwari D (2012) Iron oxide nano-particles-immobilized-sand material in the treatment of Cu (II), Cd (II) and Pb (II) contaminated waste waters. Chem Eng J 195:103–111

    Article  Google Scholar 

  27. Zeng G, Liu Y, Tang L, Yang G, Pang Y, Zhang Y, He X (2015) Enhancement of Cd (II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem Eng J 259:153–160

    Article  CAS  Google Scholar 

  28. Angelova R, Baldikova E, Pospiskova K, Safarikova M, Safarik I (2017) Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal. J Magn Magn Mater 427:314–319

    Article  CAS  Google Scholar 

  29. Hamdaoui O (2017) Adsorption of Cu (II) from aqueous phase by Cedar bark. J Dispers Sci Technol 38(8):1087–1091

    Article  CAS  Google Scholar 

  30. Calagui MJC, Senoro DB, Kan CC, Salvacion JW, Futalan CM, Wan W (2014) Adsorption of indium (III) ions from aqueous solution using chitosan-coated bentonite beads. J Hazard Mater 277:120–126

    Article  CAS  Google Scholar 

  31. Ahmad M, Ahmed S, Swami BL, Ikram S (2015) Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent. Carbohydr Polym 132:164–172

    Article  CAS  Google Scholar 

  32. Karthik R, Meenakshi S (2015) Removal of Pb (II) and Cd (II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168–177

    Article  CAS  Google Scholar 

  33. Li X, Wang S, Liu Y, Jiang L, Song B, Li M, Ding Y (2016) Adsorption of Cu (II), Pb (II), and Cd (II) ions from acidic aqueous solutions by diethylenetriaminepentaacetic acid-modified magnetic graphene oxide. J Chem Eng Data 62(1):407–416

    Article  Google Scholar 

  34. Kyzas GZ, Siafaka PI, Pavlidou EG, Chrissafis KJ, Bikiaris DN (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448

    Article  CAS  Google Scholar 

  35. Peng S, Meng H, Ouyang Y, Chang J (2014) Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind Eng Chem Res 53(6):2106–2113

    Article  CAS  Google Scholar 

  36. Ghorai S, Sinhamahpatra A, Sarkar A, Panda AB, Pal S (2012) Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190

    Article  CAS  Google Scholar 

  37. Sahu TK, Arora S, Banik A, Iyer PK, Qureshi M (2017) Efficient and rapid removal of environmental malignant arsenic (III) and industrial dyes using reusable, recoverable ternary iron oxide-ORMOSIL-reduced graphene oxide composite. ACS Sustain Chem Eng 5(7):5912–5921

    Article  CAS  Google Scholar 

  38. Dash S, Chaudhuri H, Gupta R, Nair UG, Sarkar A (2017) Fabrication and application of low-cost thiol functionalized coal fly ash for selective adsorption of heavy toxic metal ions from water. Ind Eng Chem Res 56(6):1461–1470

    Article  CAS  Google Scholar 

  39. Dinu MV, Dinu IA, Lazar MM, Dragan ES (2018) Chitosan-based ion-imprinted cryo-composites with excellent selectivity for copper ions. Carbohydr Polym 186:140–149

    Article  CAS  Google Scholar 

  40. de Almeida FTR, Ferreira BCS, Moreira ALDSL, de Freitas RP, Gil LF, Gurgel LVA (2016) Application of a new bifunctionalized chitosan derivative with zwitterionic characteristics for the adsorption of Cu2+, Co2+, Ni2+, and oxyanions of Cr6+ from aqueous solutions: Kinetic and equilibrium aspects. J Colloid Interface Sci 466:297–309

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nuclear Science and Engineering Institute at the University of Missouri-Columbia, USA for allowing us working in their laboratories. In addition, the authors thank the Chemical Engineering Department at the University of Tikrit, Iraq for financial support of the experimental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhaib S. Salih.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salih, S.S., Mohammed, H.N., Abdullah, G.H. et al. Simultaneous Removal of Cu(II), Cd(II), and Industrial Dye onto a Composite Chitosan Biosorbent. J Polym Environ 28, 354–365 (2020). https://doi.org/10.1007/s10924-019-01612-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01612-x

Keywords

Navigation