Skip to main content
Log in

Nano Graphene-Reinforced Bio-nanocomposites Based on NR/PLA: The Morphological, Thermal and Rheological Perspective

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bio-based graphene-reinforced thermoplastic elastomers (TPE) based on natural rubber (NR), and poly lactic acid (PLA) were successfully prepared via melt blending. The effect of graphene nanosheets (GNS) content and coupling agent were investigated on morphological, thermal and rheological properties of the PLA/NR/GNS bio-nanocomposites. More stable morphology of uniformly dispersed NR phase in the continuous PLA matrix with a relatively narrower diameter-size distribution was achieved in the presence of a compatibilizer. Moreover, transmission electron micrographs showed more improved dispersion of GNS with predominantly exfoliated morphology in the case of ENR-compatibilized PLA/NR/GNS bio-nanocomposites. Crystallization/melting studies revealed that, as the GNS content increased, the cold-crystallization peak, melting peak and glass-to-rubber transition temperature values shifted to higher temperatures and the crystallinities of blends slightly decreased (about 7%) which might be attributed to the reduction of polymeric segments mobility by the restricting effect of GNS. Dynamical mechanical investigation showed that the storage modulus (E′) increased about 25% by the introduction of GNS due to the inherent stiffness of GNS and the occurrence of compatibility in the PLA/NR blend in the presence of ENR. The presence of ENR shifted the \( T_{g} \) of the NR phase and the PLA matrix towards each other which is a characteristic of higher miscibility and compatibility. The thermogravimetry (TGA) and derivative thermogravimetry (DTG) curves revealed higher thermal stability of the compatibilized-PLA/NR blends due to the enhanced interfacial adhesion and the homogenous dispersion of GNSs as direct effects of the presence of ENR. Rheological studies indicated that the formation of the effective GNS-polymer networks by the presence of ENR increased the storage modulus (G′) and complex viscosity (η*) value due to the effectiveness of the GNS in taking loads and restricted molecular motion, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Esmizadeh E, Naderi G, Ghoreishy Mir Hamid R, Bakhshandeh Gholam R (2011) J Polym Mater 31:83

  2. Esmizadeh E, Irani A, Naderi G, Ghoreishy MHR, Dobious C (2018) J Appl Polym Sci 135:45977

    Article  CAS  Google Scholar 

  3. Vahidifar A, Esmizadeh E, Elahi M, Ghoreishy MHR, Naderi G, Rodrigue D (2019) J Appl Polym Sci 136:47795

    Article  CAS  Google Scholar 

  4. Kang H, Hu X, Li M, Zhang L, Wu Y, Ning N, Tian M (2015) RSC Adv 5:23498

    Article  CAS  Google Scholar 

  5. Delkash M, Naderi G, Sahraieyan R, Esmizadeh E (2017) Sci Eng Compos Mater 24:669

    Article  CAS  Google Scholar 

  6. Ma P, Xu P, Liu W, Zhai Y, Dong W, Zhang Y, Chen M (2015) RSC Adv 5:15962

    Article  CAS  Google Scholar 

  7. Fu Y, Liu L, Zhang J (2014) ACS Appl Mater Interfaces 6:14069

    Article  CAS  PubMed  Google Scholar 

  8. Tanrattanakul V, Bunkaew P (2014) Express Polym Lett 8:387

    Article  CAS  Google Scholar 

  9. Karim MN, Rigout M, Yeates SG, Carr C (2014) Dyes Pigment 103:168

    Article  CAS  Google Scholar 

  10. Karim MN, Afroj S, Rigout M, Yeates SG, Carr C (2015) J Mater Sci 50:4576

    Article  CAS  Google Scholar 

  11. Pongtanayut K, Thongpin C, Santawitee O (2013) Energy Procedia. 34:888

    Article  CAS  Google Scholar 

  12. Ma P, Hristova-Bogaerds D, Goossens J, Spoelstra A, Zhang Y, Lemstra P (2012) Eur Polym J 48:146

    Article  CAS  Google Scholar 

  13. Talbamrung T, Kasemsook C, Sangtean W, Wachirahuttapong S, Thongpin C (2016) Energy Procedia. 89:274

    Article  CAS  Google Scholar 

  14. Tanrattanakul V, Bunkaew P, Boonlong N (2012) J Biobased Mater Bioenergy 6:573

    Article  CAS  Google Scholar 

  15. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado M (2011) Mater Chem Phys 129:823

    Article  CAS  Google Scholar 

  16. Zaman HU, Song JC, Park L-S, Kang I-K, Park S-Y, Kwak G, Park B-S, Yoon K-B (2011) Polym Bull 67:187

    Article  CAS  Google Scholar 

  17. Moura I, Botelho G, Machado A (2014) J Polym Environ 22:148

    Article  CAS  Google Scholar 

  18. Zhang W, Chen L, Zhang Y (2009) Polymer 50:1311

    Article  CAS  Google Scholar 

  19. Han L, Han C, Dong L (2013) Polym Int 62:295

    Article  CAS  Google Scholar 

  20. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) J Appl Polym Sci 124:5027

    CAS  Google Scholar 

  21. Xu C, Yuan D, Fu L, Chen Y (2014) Polym Test 37:94

    Article  CAS  Google Scholar 

  22. Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2012) J Appl Polym Sci 125:745

    Article  CAS  Google Scholar 

  23. Huang Y, Zhang C, Pan Y, Zhou Y, Jiang L, Dan Y (2013) Polym Degrad Stab 98:943

    Article  CAS  Google Scholar 

  24. Chen Y, Yuan D, Xu C (2014) ACS Appl Mater Interfaces 6:3811

    Article  CAS  PubMed  Google Scholar 

  25. Yuan D, Chen K, Xu C, Chen Z, Chen Y (2014) Carbohyd Polym 113:438

    Article  CAS  Google Scholar 

  26. Liu Y, Cao L, Yuan D, Chen Y (2018) Compos Sci Technol 165:231

    Article  CAS  Google Scholar 

  27. Bitinis N, Verdejo R, Maya E, Espuche E, Cassagnau P, Lopez-Manchado M (2012) Compos Sci Technol 72:305

    Article  CAS  Google Scholar 

  28. Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013) Carbohyd Polym 96:611

    Article  CAS  Google Scholar 

  29. Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013) Carbohyd Polym 96:621

    Article  CAS  Google Scholar 

  30. Razavi-Nouri M, Karami M, Naderi G (2017) Appl Clay Sci 145:1

    Article  CAS  Google Scholar 

  31. Abdolrasouli MH, Behzadfar E, Nazockdast H, Sharif F (2012) J Appl Polym Sci 125:E435

    Article  CAS  Google Scholar 

  32. Afshar A, Hosseini MS, Behzadfar E (2014) Sci Iran Trans C 21:2107

    Google Scholar 

  33. Hajibaba A, Naderi G, Esmizadeh E, Ghoreishy MHR (2014) J Compos Mater 48:131

    Article  CAS  Google Scholar 

  34. Esmizadeh E, Naderi G, Bakhshandeh GR, Fasaie MR, Ahmadi S (2017) Polym Sci Ser B 59:362

    Article  CAS  Google Scholar 

  35. Wang Y, Chen F-B, Li Y-C, Wu K-C (2004) Compos B Eng 35:111

    Article  CAS  Google Scholar 

  36. Esmizadeh E, Naderi G, Ghoreishy MHR (2013) J Appl Polym Sci 130:3229

    Article  CAS  Google Scholar 

  37. Paran S, Naderi G, Ghoreishy M (2017) Polym Compos 38:E451

    Article  CAS  Google Scholar 

  38. Taghizadeh E, Naderi G, Razavi-Nouri M (2011) Polym Test 30:327

    Article  CAS  Google Scholar 

  39. Dadbin S, Noferesti M, Frounchi M (2008) Macromol Symp 274:22

    Article  CAS  Google Scholar 

  40. Coppola S, Balzano L, Gioffredi E, Maffettone PL, Grizzuti N (2004) Polymer 45:3249

    Article  CAS  Google Scholar 

  41. Nematollahi M, Jalali-Arani A, Modarress H (2019) Polym Int 68:439

    Article  CAS  Google Scholar 

  42. Mohan T, Kuriakose J, Kanny K (2011) J Ind Eng Chem 17:264

    Article  CAS  Google Scholar 

  43. Andideh M, Naderi G, Ghoreishy MHR, Soltani S (2013) Polym Plast Technol Eng 52:1016

    Article  CAS  Google Scholar 

  44. Razak JA, Ahmad SH, Ratnam CT, Mahamood MA, Mohamad N (2015) J Mater Sci 50:6365

    Article  CAS  Google Scholar 

  45. Julie Chandra CS, Bipinbal PK, Sunil KN (2017) Polym Test 60:187

    Article  CAS  Google Scholar 

  46. Katbab A, Nazockdast H, Bazgir S (2000) J Appl Polym Sci 75:1127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Naderi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmizadeh, E., Sadeghi, T., Vahidifar, A. et al. Nano Graphene-Reinforced Bio-nanocomposites Based on NR/PLA: The Morphological, Thermal and Rheological Perspective. J Polym Environ 27, 1529–1541 (2019). https://doi.org/10.1007/s10924-019-01450-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01450-x

Keywords

Navigation