Skip to main content

Advertisement

Log in

Ketoprofen Loaded in Natural Rubber Latex Transdermal Patch for Tendinitis Treatment

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Ketoprofen is an analgesic with potent anti-inflammatory activity against acute inflammation, subacute inflammation, for the acute and long-term treatment of various inflammatory pathologies, as rheumatoid arthritis and colonic adenocarcinoma. In order to minimize the incidence of systemic events related to ketoprofen, the transdermal drug delivery system development has been most important. The advantages of using natural rubber latex membranes include not only the reduction of adverse systemic events, but also the suitability of the low cost of the material together with its physicochemical properties such as flexibility, mechanical stability, surface porosity and water vapor permeability, and besides being a biocompatible material also presents biological activity to stimulate the angiogenesis, being able to be used in tissue repair. This study demonstrated that ketoprofen was successfully incorporated into natural latex membranes for drug delivery. FTIR indicated that the drug did not interact chemically with the membrane. Moreover, the natural latex membranes released 60% of the ketoprofen incorporated in 50 h. SEM images indicated that a portion of the drug was present on the membrane surface, being this portion responsible for the burst release. The tensile tests showed that the addition of the drug into the natural latex membrane did not influence on the polymer mechanical behavior. In addition, drug-natural latex membranes presented no red blood cell damaging effects. Our data shows that the ketoprofen loaded natural latex membranes is a promising system for sustained drug delivery which can be used to minimize the adverse side effects of high dose systemic drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DNRL:

Deproteinized natural rubber latex

FTIR:

Fourier transform infrared

GS:

Gentamicin sulfate

NCT:

Nicotine

NRL:

Natural rubber latex

NSAIDs:

Anti-inflammatory drugs

PTFE:

Polytetrafluoroethylene

SEM:

Scanning electron microscopy

TDDS:

Transdermal drug delivery systems

PBS:

Phosphate buffered saline

References

  1. Herculano RD, Silva CP, Ereno C, Guimaraes SAC, Kinoshita AMO, Graeff CFO (2009) Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12:253–256

    Article  CAS  Google Scholar 

  2. Hussain A, Khan GM, Shah SU, Shah KU, Rahim N, Wahab A, Rehman AU (2012) Development of a novel ketoprofen transdermal patch: effect of almond oil as penetration enhancers on in-vitro and ex-vivo penetration of ketoprofen through rabbit skin. Pak J Pharm Sci 25:227–232

    CAS  PubMed  Google Scholar 

  3. Rajesh K, Pitchaimani R (2006) Formulation of transdermal drug delivery system. Curr Drug Discov Technol 3:279–285

    Article  Google Scholar 

  4. Rajesh N, Siddaramaiah, Gowda DV, Somashekar CN (2010) Formulation and evaluation of biopolymer based transdermal drug delivery. Int J Pharm Pharm Sci 2:142–147

    CAS  Google Scholar 

  5. Ramesh G, Vamshi VY, Kishan V, Madhusan RY (2007) Development of nitrendipine transdermal patches: in vitro and ex vivo characterization. Curr Drug Deliv 4:69–76

    Article  Google Scholar 

  6. Thomas G, Kantor MD, Ketoprofen: (1986) A review of its pharmacologic and clinical properties. Pharmacotherapy. doi:10.1002/j.1875-9114.1986.tb03459.x

    Article  Google Scholar 

  7. Maestrelli F, Zerrouk N, Cirri M, Mura P (2015) Comparative evaluation of polymeric and waxy microspheres for combined colon delivery of ascorbic acid and ketoprofen. Int J Pharm. doi:10.1016/j.ijpharm.2015.02.073

    Article  PubMed  Google Scholar 

  8. Julou L, Guyonnet JC, Ducrot R, Fournel J, Pasquet J (1976) Ketoprofen (19.583 R.P.) (2-(3-benzoylphenyl)-propionic acid). Main pharmacological properties–outline of toxicological and pharmacokinetic data. Scand J Rheumatol Suppl 1976:33–44

    CAS  PubMed  Google Scholar 

  9. Dawson W, Boot JR, Harvey J, Walker JR (1982) The pharmacology of benoxaprofen with particular reference to effects on lipoxygenase products formation. Eur J Rheumatol lnflamm 5:61–68

    CAS  Google Scholar 

  10. Rahbek I (1976) Gastroscopic evaluation of the effect of a new anti-rheumatic compound, ketoprofen (19.583 R.P.), on the human gastric mucosa. A double-blind cross-over trial against acetylsalicylic acid. Scand J Rheumatol 1976:63–72

    CAS  Google Scholar 

  11. Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. doi:10.1016/S0928-0987(01)00167-1

    Article  PubMed  Google Scholar 

  12. Floriano JF, Mota LSLS, Furtado EL, Rossetto VJV, Graeff CFO (2014) Biocompatibility studies of natural rubber latex from different tree clones and collection methods. J Mater Sci 25:461–470

    CAS  Google Scholar 

  13. Neves-Junior WFP, Graeff CFO, Ferreira M, Mulato M, Bernardes MS, Coutinho-Netto J (2006) Elastic properties of natural rubber tubes produced by dip-coating. J Appl Polym Sci 100:702–707

    Article  CAS  Google Scholar 

  14. Narayanan E, Yee HC (1973) Clonal nursey studies in Hevea. II. Relationship between yield and girth. J Rubber Res Inst Malays 23:332–338

    Google Scholar 

  15. Othman AB, Hepbur C, Hasma H (1993) Influence of non-rubber constituents on elastic properties of natural rubber vulcanizates. Plast Rubber Compos Process Appl 19:185–194

    CAS  Google Scholar 

  16. Silva GA, Coutinho OP, Ducheyne P, Reis RL (2007) Materials in particulate form for tissue engineering applications in bone. J Tissue Eng Regen Méd 1:97–109

    Article  CAS  PubMed  Google Scholar 

  17. Nascimento RM, Faita FL, Agostini DLS, Job AE, Guimarães FEG, Bechtold IH (2014) Production and characterization of natural rubber–Ca/P blends for biomedical purposes. Mater Sci Eng. doi:10.1016/j.msec.2014.02.019

    Article  Google Scholar 

  18. Floriano JF, Neto FC, Mota LSLS, Furtado EL, Ferreira RS, Barraviera B, Gonçalves PJ, Almeida LM, Borges FA, Herculano RD, Graeff CFO (2016) Comparative study of bone tissue accelerated regeneration by latex membranes from Hevea brasiliensis and Hancornia speciosa. Biomed Phys Eng Express. doi:10.1088/2057-1976/2/4/045007

    Article  Google Scholar 

  19. Barros NR, Miranda MCR, Borges FA, Mendonça RJ, Cilli EM, Herculano RD (2016) Oxytocin sustained release using natural rubber latex membranes. Int J Pep Res Ther. doi:10.1007/s10989-016-9523-y

    Article  Google Scholar 

  20. Barros NR, Chagas PAM, Borges FA, Gemeinder JLP, Miranda MCR, Garms BC, Herculano RD (2015) Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. J Mater. doi:10.1155/2015/807948

    Article  Google Scholar 

  21. Aielo PB, Borges FA, Romeira KM, Miranda MCR, Arruda LB, Filho PNL, Drago BC, Herculano RD (2014) Evaluation of sodium diclofenac release using natural rubber latex as carrier. Mat Res 17:146–152

    Article  CAS  Google Scholar 

  22. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GM (2012) Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci. doi:10.1016/j.memsci.2012.04.017

    Article  Google Scholar 

  23. Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W (2012) Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. ChemEng Res Des. doi:10.1016/j.cherd.2011.11.002

    Article  Google Scholar 

  24. Phaechamud T, Issarayungyuen P, Pichayakorn W (2016) Gentamicin sulfate-loaded porous natural rubber films for wound dressing. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2016.01.040

    Article  PubMed  Google Scholar 

  25. Barros NR, Miranda MCR, Borges FA, Gemeinder JLP, Mendonça RJ, Cilli EM, Herculano RD (2017) Natural rubber latex: development and in vitro characterization of a future transdermal patch for enuresis treatment. Int J Polym Mater Po. doi:10.1080/00914037.2017.1280795

    Article  Google Scholar 

  26. Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Ratsimaloto M, Naoki H, Yasumoto T (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon. doi:10.1016/S0041-0101(98)00133-0

    Article  PubMed  Google Scholar 

  27. Borges FA, Bolognesi LFC, Treco A, Drago BC, Arruda LB, Lisboa-Filho PN, Perri EG, Graeff CFO, Santos AG, Miranda MCR, Herculano RD (2014) Natural rubber latex: study of a novel carrier for Casearia sylvestris Swartz delivery. ISRN Polym Sci. doi:10.1155/2014/241297

    Article  Google Scholar 

  28. Garms BC, Borges FA, Santos RE, Nigoghossian K, Miranda MCR, Miranda IU, Daltro P, Scarpari SL, Giagio RJ, Barros NR, Alarcon KM, Drago BC, Gemeinder JLP, Oliveira BH, Nascimento VMG, Loffredo AL, Herculano RD (2017) Characterization and microbiological application of ciprofloxacin loaded in natural rubber latex membranes. Br J Pharm Res. doi:10.9734/BJPR/2017/31614

    Article  Google Scholar 

  29. Murbach HD, Ogawa GJ, Borges FA, Miranda MCR, Lopes R, Barros NR, Mazalli AVG, Silvia RG, Cinman JLF, Drago BC, Herculano RD (2014) Ciprofloxacin release using natural rubber latex membranes as carrier. Int J Biomater. doi:10.1155/2014/157952

    Article  Google Scholar 

  30. Aravindaram AS, Nandan RVS, Gowda DV, Khan MS (2011) Development and evaluation of Ketoprofen loaded biopolymer based transdermal film. Scholars Res Library 3:233–244

    CAS  Google Scholar 

  31. Al-Nasi AA, Al-Tahami KA (2016) Preparation, characterization, and in vitro release of ketoprofen loaded polymeric microspheres. Int J PharmTech Res 9:313–321

    CAS  Google Scholar 

  32. Tous S, Fathy M, Fetih G, Gad SF (2014) Preparation and evaluation of ketoprofen-loaded calcium alginate beads. Int J Pharm Tech Res 6:1100–1112

    CAS  Google Scholar 

  33. Anh NT, Chi NT, Tran TK, Dao TPT, Le NTN, Chien DM, Hoai NT (2012) Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release. Adv Nat Sci Nanosci Nanotechnol. doi:10.1088/2043-6262/3/4/045015

    Article  Google Scholar 

  34. Borges FA, Almeida-Filho E, Miranda MCR, dos Santos ML, Herculano RD, Guastaldi AC (2015) Natural rubber latex coated with calcium phosphate for biomedical application. J Biomater Sci Polym Ed. doi:10.1080/09205063.2015.1086945

    Article  PubMed  Google Scholar 

  35. Herculano RD, de Queiroz AAA, Kinoshita A, Oliveira ON Jr, Graeff CFO, Herculano RD (2011) On the release of metronidazole from natural rubber latex membranes. Mat Sci Eng C. doi:10.1016/j.msec.2010.09.007

    Article  Google Scholar 

  36. Mazières B (2005) Topical ketoprofen patch. Drugs R D 6:337–444

    Article  PubMed  Google Scholar 

  37. Mazières B, Rouanet S, Guillon Y, Scarsi C, Reiner V (2005) Topical ketoprofen patch in the treatment of tendinitis: a randomized, double blind, placebo controlled study. J Rheumatol 32:1563–1570

    PubMed  Google Scholar 

Download references

Acknowledgements

Our thanks to Prof. Dr. Joaquin Coutinho Netto (in memoriam), for his great contribution to the study and understanding of the bioactive properties of latex.

Funding

This work was supported by CAPES, CNPq (Process: 470261/2012-9) and FAPESP (Processes 2014/17526-8, 2011/17411-8).

Availability of Data and Materials

All data analysed during the current study that are not already included in this published article, are available from the corresponding author on reasonable request.

Authors’ Contributions

This work was carried out in collaboration between all authors. JFF, NRB, JLFC, JLPG, RGS, AVL, FAB, AMQN and ALDC realized the experimental techniques. JFF, AVL and FAB realized the kinetic release of extract, NRB and ALDC realized the SEM, mechanical resistance and FTIR analyses. JLFC, JLPG and AMQN realized the hemolysis assay. The mechanism of release was evaluated by NRB and RGS. NRB, AVL, FAB, BCG and ALCD had corrected the typographical and grammatical errors. Finally, the format of the paper has been updated by RDH and CFOG. RDH and CFOG are advisors and the head of laboratory. All authors read and approved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juliana Ferreira Floriano or Natan Roberto de Barros.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floriano, J.F., de Barros, N.R., Cinman, J.L.F. et al. Ketoprofen Loaded in Natural Rubber Latex Transdermal Patch for Tendinitis Treatment. J Polym Environ 26, 2281–2289 (2018). https://doi.org/10.1007/s10924-017-1127-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1127-x

Keywords

Navigation