Skip to main content
Log in

Deployment of Future Services in a Multi-access Edge Computing Environment Using Intelligence at the Edge

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The transition to beyond fifth generation (B5G) and sixth generation (6G) networks will lead to the support of new and future services, like virtual reality, vehicle collision avoidance or Internet-of-Things applications, among others. Such applications will be deployed based on loosely-coupled and independent microservices under different Quality of Service (QoS) requirements. Moreover, future applications will be either delay-tolerant or delay-sensitive, resulting in different application categories. Therefore, any provisioning technique will have to meet a large range of requirements, with flexibility and optimally, to accommodate the different service demands onto a common network. This is a major challenge for current networks, having to provide such services under strict QoS requirements, at minimum cost, and in a reasonable time. Currently, multi-access edge computing (MEC) has been proposed to deploy time-sensitive microservice-based applications, increasing the complexity of an optimal deployment in resource-constrained systems. Moreover, traditional heuristic algorithms do follow static solving strategies, resulting in sub-optimal provisioning decisions. To address this problem, we propose a combined heuristic and artificial intelligence technique that minimizes the cost of deployment at the edge of the network, optimally provisioning, in reasonable time, different types of applications with different requirements, to be done on single or multiple MECs, according to the category of the requested application and current MEC state features. Extensive simulation results show that the use of an intelligent algorithm significantly improves most of the performance metrics used, especially the minimization deployment cost, compared to other baseline techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Han, C., Wu, Y., Chen, Z., et al.: Network 2030 a blueprint of technology, applications and market drivers towards teh year 2030 and beyond. International Telecommunication Union (2018)

  2. Clemm, A., Zhani, M.F., Boutaba, R.: Network management 2030: operations and control of network 2030 services. J. Netw. Syst. Manag. 28(4), 721–750 (2020)

    Article  Google Scholar 

  3. Katz, M., Matinmikko-Blue, M., Latva-Aho, M.: 6 genesis flagship program: Building the bridges towards 6g-enabled wireless smart society and ecosystem. In: Proceedings of the 2018 IEEE 10th Latin-American Conference on Communications (LATINCOM), pp. 1–9 (2018)

  4. He, X., Tu, Z., Xu, X., Wang, Z.: Programming framework and infrastructure for self-adaptation and optimized evolution method for microservice systems in cloud-edge environments. Future Gener. Comput. Syst. 118, 263–281 (2021)

    Article  Google Scholar 

  5. Premsankar, G., Di Francesco, M., Taleb, T.: Edge computing for the internet of things: a case study. IEEE Internet Things J. 5(2), 1275–1284 (2018)

    Article  Google Scholar 

  6. Wang, S., Parsons, M., Stone-McLean, J., Rogers, P., Boyd, S., Hoover, K., Meruvia-Pastor, O., Gong, M., Smith, A.: Augmented reality as a telemedicine platform for remote procedural training. Sensors 17(10), 2294 (2017)

    Article  Google Scholar 

  7. Jamiat, N., Othman, N.F.N.: Effects of augmented reality mobile apps on early childhood education students’ achievement. In: Proceedings of the 2019 The 3rd International Conference on Digital Technology in Education, pp. 30–33 (2019)

  8. Huang, C., Hu, S., Alexandropoulos, G.C., Zappone, A., Yuen, C., Zhang, R., Di Renzo, M., Debbah, M.: Holographic mimo surfaces for 6g wireless networks: opportunities, challenges, and trends. IEEE Wirel. Commun. 27(5), 118–125 (2020)

    Article  Google Scholar 

  9. Yastrebova, A., Kirichek, R., Koucheryavy, Y., Borodin, A., Koucheryavy, A.: Future networks 2030: Architecture & requirements. In: Proceedings of the 10th International congress on ultra modern telecommunications and control systems and workshops (ICUMT). IEEE 2018, pp. 1–8 (2018)

  10. Elbamby, M.S., Perfecto, C., Bennis, M., Doppler, K.: Toward low-latency and ultra-reliable virtual reality. IEEE Netw. 32(2), 78–84 (2018)

    Article  Google Scholar 

  11. Nguyen, N.D., Phan, L.-A., Park, D.-H., Kim, S., Kim, T.: Elasticfog: elastic resource provisioning in container-based fog computing. IEEE Access 8, 183879–183890 (2020)

    Article  Google Scholar 

  12. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5g. ETSI White Pap. 11(11), 1–16 (2015)

    Google Scholar 

  13. Computing, E.M.E., Initiative, M, et al.: Mobile-edge computing: introductory technical white paper, ETSI: Sophia Antipolis, France, pp. 1–36 (2014)

  14. Huang, X., He, L., Chen, X., Liu, G., Li, F.: A more refined mobile edge cache replacement scheme for adaptive video streaming with mutual cooperation in multi-mec servers. In: Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME). IEEE, pp. 1–6 (2020)

  15. Karimi, A., Pedersen, K.M., Mahmood, N.H., Berardinelli, G., Mogensen, P.: On the multiplexing of data and metadata for ultra-reliable low-latency communications in 5g. IEEE Trans. Veh. Technol. 69(10), 12136–12147 (2020)

    Article  Google Scholar 

  16. Deng, M., Tian, H., Fan, B.: Fine-granularity based application offloading policy in cloud-enhanced small cell networks. In: Proceedings of the 2016 IEEE International Conference on Communications Workshops (ICC). IEEE, pp. 638–643 (2016)

  17. FG-NET2030, I.: New services and capabilities for network 2030: description, technical gap and performance target analysis, FG-NET2030 document NET2030-O-027 (2019)

  18. Chakareski, J.: Vr/ar immersive communication: caching, edge computing, and transmission trade-offs. In: Proceedings of the Workshop on Virtual Reality and Augmented Reality Network, pp. 36–41 (2017)

  19. Ren, J., He, Y., Huang, G., Yu, G., Cai, Y., Zhang, Z.: An edge-computing based architecture for mobile augmented reality. IEEE Netw. 33(4), 162–169 (2019)

    Article  Google Scholar 

  20. Rauschnabel, P.A.: Augmented reality is eating the real-world! the substitution of physical products by holograms. Int. J. Inf. Manag. 57, 102279 (2021)

    Article  Google Scholar 

  21. Lu, L., Wang, H., Liu, P., Liu, R., Zhang, J., Xie, Y., Liu, S., Huo, T., Xie, M., Wu, X., et al.: Applications of mixed reality technology in orthopedics surgery: a pilot study. Front. Bioeng. Biotechnol. 10, 740507 (2022)

    Article  Google Scholar 

  22. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

    Article  Google Scholar 

  23. Cherradi, G., El Bouziri, A., Boulmakoul, A., Zeitouni, K.: Real-time hazmat environmental information system: a micro-service based architecture. Procedia Comput. Sci. 109, 982–987 (2017)

    Article  Google Scholar 

  24. Filip, I.-D., Pop, F., Serbanescu, C., Choi, C.: Microservices scheduling model over heterogeneous cloud-edge environments as support for iot applications. IEEE Internet Things J. 5(4), 2672–2681 (2018)

    Article  Google Scholar 

  25. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architectures: an industrial survey. In: Proceedings of the 2018 IEEE International Conference on Software Architecture (ICSA). IEEE, pp. 29–2909 (2018)

  26. Boyer, F., Etchevers, X., De Palma, N., Tao, X.: Architecture-based automated updates of distributed microservices. In: Proceedings of the Service-Oriented Computing: 16th International Conference, ICSOC 2018. Springer, Hangzhou, China, 12–15 Nov, pp. 21–36 (2018)

  27. Voegler, M., Schleicher, J.M., Inzinger, C., Dustdar, S.: Optimizing elastic iot application deployments. IEEE Trans. Serv. Comput. 11(5), 879–892 (2016)

    Google Scholar 

  28. Abdullah, M., Iqbal, W., Erradi, A.: Unsupervised learning approach for web application auto-decomposition into microservices. J. Syst. Softw. 151, 243–257 (2019)

    Article  Google Scholar 

  29. Wan, X., Guan, X., Wang, T., Bai, G., Choi, B.-Y.: Application deployment using microservice and docker containers: framework and optimization. J. Netw. Comput. Appl. 119, 97–109 (2018)

    Article  Google Scholar 

  30. Tan, B., Ma, H., Mei, Y., A nsga-II-based approach for multi-objective micro-service allocation in container-based clouds. In: Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE 2020, pp. 282–289 (2020)

  31. Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L., Villari, M.: Open issues in scheduling microservices in the cloud. IEEE Cloud Comput. 3(5), 81–88 (2016)

    Article  Google Scholar 

  32. Guerrero, C., Lera, I., Juiz, C.: Resource optimization of container orchestration: a case study in multi-cloud microservices-based applications. J. Supercomput. 74(7), 2956–2983 (2018)

    Article  Google Scholar 

  33. Niu, Y., Liu, F., Li, Z.: Load balancing across microservices. In: Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, pp. 198–206 (2018)

  34. Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L., Chan, H.A., Multi-objective scheduling of micro-services for optimal service function chains. In: Proceedings of the IEEE International Conference on Communications (ICC). IEEE 2017, 1–6 (2017)

  35. Wen, Z., Lin, T., Yang, R., Ji, S., Ranjan, R., Romanovsky, A., Lin, C., Xu, J.: Ga-par: dependable microservice orchestration framework for geo-distributed clouds. IEEE Trans. Parallel Distrib. Syst. 31(1), 129–143 (2019)

    Article  Google Scholar 

  36. Wang, L., Jiao, L., He, T., Li, J., Mühlhäuser, M.: Service entity placement for social virtual reality applications in edge computing. In: Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, pp. 468–476 (2018)

  37. Deng, S., Xiang, Z., Taheri, J., Khoshkholghi, M.A., Yin, J., Zomaya, A.Y., Dustdar, S.: Optimal application deployment in resource constrained distributed edges. IEEE Trans. Mob. Comput. 20(5), 1907–1923 (2020)

    Article  Google Scholar 

  38. Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M., Leung, K.K.: Dynamic service placement for mobile micro-clouds with predicted future costs. IEEE Trans. Parallel Distrib. Syst. 28(4), 1002–1016 (2016)

    Article  Google Scholar 

  39. Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 36(10), 2333–2345 (2018)

    Article  Google Scholar 

  40. Ren, J., Yu, G., Cai, Y., He, Y.: Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 17(8), 5506–5519 (2018)

    Article  Google Scholar 

  41. Chen, L., Xu, Y., Lu, Z., Wu, J., Gai, K., Hung, P.C., Qiu, M.: Iot microservice deployment in edge-cloud hybrid environment using reinforcement learning. IEEE Internet Things J. 8(16), 12610–12622 (2020)

    Article  Google Scholar 

  42. He, T., Khamfroush, H., Wang, S., La Porta, T., Stein, S.: It’s hard to share: Joint service placement and request scheduling in edge clouds with sharable and non-sharable resources. In: Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). IEEE, pp. 365–375 (2018)

  43. Chen, F., Zhou, J., Xia, X., Jin, H., He, Q.: Optimal application deployment in mobile edge computing environment. In: Proceedings of the 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE, pp. 184–192 (2020)

  44. Faticanti, F., De Pellegrini, F., Siracusa, D., Santoro, D., Cretti, S.: Throughput-aware partitioning and placement of applications in fog computing. IEEE Trans. Netw. Serv. Manag. 17(4), 2436–2450 (2020)

    Article  Google Scholar 

  45. Li, B., He, Q., Cui, G., Xia, X., Chen, F., Jin, H., Yang, Y.: Read: Robustness-oriented edge application deployment in edge computing environment. IEEE Trans. Serv. Comput. 15, 1746 (2020)

    Article  Google Scholar 

  46. Lv, Z., Xiu, W.: Interaction of edge-cloud computing based on sdn and nfv for next generation iot. IEEE Internet Things J. 7(7), 5706–5712 (2019)

    Article  Google Scholar 

  47. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

    Article  MathSciNet  Google Scholar 

  48. Mu, S., Zhong, Z., Zhao, D., Ni, M.: Joint job partitioning and collaborative computation offloading for internet of things. IEEE Internet Things J. 6(1), 1046–1059 (2018)

    Article  Google Scholar 

  49. Lv, Z., Qiao, L.: Optimization of collaborative resource allocation for mobile edge computing. Comput. Commun. 161, 19–27 (2020)

    Article  Google Scholar 

  50. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  51. Chen, J., Chen, S., Wang, Q., Cao, B., Feng, G., Hu, J.: iraf: a deep reinforcement learning approach for collaborative mobile edge computing iot networks. IEEE Internet Things J. 6(4), 7011–7024 (2019)

    Article  Google Scholar 

  52. Huang, L., Feng, X., Feng, A., Huang, Y., Qian, L.P.: Distributed deep learning-based offloading for mobile edge computing networks. Mob. Netw. Appl. 2018, 1–8 (2018)

    Google Scholar 

  53. Huang, L., Bi, S., Zhang, Y.-J.A.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2019)

    Article  Google Scholar 

  54. Xiong, X., Zheng, K., Lei, L., Hou, L.: Resource allocation based on deep reinforcement learning in iot edge computing. IEEE J. Sel. Areas Commun. 38(6), 1133–1146 (2020)

    Article  Google Scholar 

  55. Lu, H., He, X., Du, M., Ruan, X., Sun, Y., Wang, K.: Edge qoe: computation offloading with deep reinforcement learning for internet of things. IEEE Internet Things J. 7(10), 9255–9265 (2020)

    Article  Google Scholar 

  56. Qiu, X., Zhang, W., Chen, W., Zheng, Z.: Distributed and collective deep reinforcement learning for computation offloading: a practical perspective. IEEE Trans. Parallel Distrib. Syst. 32(5), 1085–1101 (2020)

    Article  Google Scholar 

  57. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., Fettweis, G.: 5g-enabled tactile internet. IEEE J. Sel. Areas Commun. 34(3), 460–473 (2016)

    Article  Google Scholar 

  58. Bittencourt, L.F., Lopes, M.M., Petri, I., Rana, O.F.: Towards virtual machine migration in fog computing. In: Proceedings of the 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE, pp. 1–8 (2015)

  59. Gong, L., Wen, Y., Zhu, Z., Lee, T.: Toward profit-seeking virtual network embedding algorithm via global resource capacity. In: Proceedings of the IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE, pp. 1–9 (2014)

  60. Amiri, R., Mehrpouyan, H., Fridman, L., Mallik, R.K., Nallanathan, A., Matolak, D., A machine learning approach for power allocation in hetnets considering qos. In: Proceedings of the IEEE international conference on communications (ICC). IEEE 2018, 1–7 (2018)

  61. Sun, G., Li, Y., Liao, D., Chang, V.: Service function chain orchestration across multiple domains: a full mesh aggregation approach. IEEE Trans. Netw. Serv. Manage. 15(3), 1175–1191 (2018)

    Article  Google Scholar 

  62. Kibalya, G., Serrat, J., Gorricho, J.-L., Okello, D., Zhang, P.: A deep reinforcement learning-based algorithm for reliability-aware multi-domain service deployment in smart ecosystems. Neural Comput. Appl. 2020, 1–23 (2020)

    Google Scholar 

  63. Kibalya, G., Serrat, J., Gorricho, J.-L., Yao, H., Zhang, P.: A novel dynamic programming inspired algorithm for embedding of virtual networks in future networks. Comput. Netw. 179, 107349 (2020)

    Article  Google Scholar 

  64. Pei, J., Hong, P., Xue, K., Li, D.: Efficiently embedding service function chains wif dynamic virtual network function placement in geo-distributed cloud system. IEEE Trans. Parallel Distrib. Syst. 30(10), 2179–2192 (2018)

    Article  Google Scholar 

  65. Lai, P., He, Q., Cui, G., Xia, X., Abdelrazek, M., Chen, F., Hosking, J., Grundy, J., Yang, Y.: Qoe-aware user allocation in edge computing systems wif dynamic qos. Future Gener. Comput. Syst. 112, 684–694 (2020)

    Article  Google Scholar 

  66. Wang, J., Hu, J., Min, G., Zomaya, A.Y., Georgalas, N.: Fast adaptive task offloading in edge computing based on meta reinforcement learning. IEEE Trans. Parallel Distrib. Syst. 32(1), 242–253 (2020)

    Article  Google Scholar 

  67. Machen, A., Wang, S., Leung, K.K., Ko, B.J., Salonidis, T.: Live service migration in mobile edge clouds. IEEE Wirel. Commun. 25(1), 140–147 (2017)

    Article  Google Scholar 

  68. KIbalya, G., Serrat-Fernandez, J., Gorricho, J.L., Zhang, P.: A reinforcement learning approach for virtual network function chaining and sharing in softwarized networks. IEEE Trans. Netw. Serv. Manag. 19(3), 3352–3370 (2022)

  69. Pekar, A., Mocnej, J., Seah, W.K., Zolotova, I.: Application domain-based overview of iot network traffic characteristics. ACM Comput. Surv. (CSUR) 53(4), 1–33 (2020)

    Article  Google Scholar 

  70. Raaen, K., Kjellmo, I.: Measuring latency in virtual reality systems. In: Chorianopoulos, K., Divitini, M., Baalsrud-Hauge, J., Jaccheri, L., Malaka, R. (eds.) Entertainment Computing - ICEC 2015, pp. 457–462. Springer, Cham (2015)

    Chapter  Google Scholar 

  71. Ahmaniemi, T., Lindholm, H., Muller, K., Taipalus, T.: Virtual reality experience as a stress recovery solution in workplace. IEEE Life Sci. Conf. (LSC) 2017, 206–209 (2017)

    Google Scholar 

  72. De Maio, V., Brandic, I.: First hop mobile offloading of dag computations. In: Proceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE 2018, pp. 83–92 (2018)

Download references

Acknowledgements

This work has been partially funded by the project "UNICO-5G I+D-OPTIMAIX-TSI-063000-2021-34".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bosco Ssemakula.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ssemakula, J.B., Gorricho, JL., Kibalya, G. et al. Deployment of Future Services in a Multi-access Edge Computing Environment Using Intelligence at the Edge. J Netw Syst Manage 31, 72 (2023). https://doi.org/10.1007/s10922-023-09761-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-023-09761-0

Keywords

Navigation