Skip to main content
Log in

Nonlinear Ultrasonic Inspection of the Effect of Contaminants on Material Properties of Epoxy-Adhesive

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Adhesive joints have been an effective alternative to conventional mechanical fasteners for joining materials in the aerospace and automotive industries. Although adhesive joints have various advantages, including uniform stress distribution, lower weight, improved corrosion tolerance, and design flexibility, there can be various defects in adhesive joints, which have limited wider application. This paper investigates the effect of a contaminant on the chemical and mechanical properties of the epoxy-adhesive and seeks to determine if a second harmonic generation method can reliably detect and characterize the degree of contamination in the epoxy-adhesive. A contact based ultrasonic through-transmission method was used to measure nonlinearity and then the nonlinearity parameter was calculated using the measured fundamental and second harmonic frequency components in the signals. It was found that there is higher sensitivity to contaminant concentration, up to 1.5%, of the nonlinearity parameter than that for the sound velocity. These data were also found to correlate with changes in the mechanical hardness, which was measured by the Rockwell hardness testing, with different four levels of contamination. Differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) were also conducted to assess the effect of the contaminant on thermal properties of the epoxy-adhesive. The DSC and TGA techniques were used to evaluate the curing reaction and the thermal stability of the epoxy-adhesive respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sulejmani, S., Sonnenfeld, C., Geernaert, T., Luyckx, G., Mergo, P., Urbanczyk, W., Karima, C., Thienpont, H., Berghmans, F.: Disbond monitoring in adhesive joints using shear stress optical fiber sensors. Smart Mater. Struct. 23(7), 075006 (2014). https://doi.org/10.1088/0964-1726/23/7/075006

    Article  Google Scholar 

  2. Banea, M.D., Rosioara, M., Carbas, R.J.C., Silva, D.: Multi-material adhesive joints for automotive industry. Compos. Part B: Eng. 151, 71–77 (2018). https://doi.org/10.1016/j.compositesb.2018.06.009

    Article  Google Scholar 

  3. Guyott, C.C.H., Cawley, P., Adams, R.D.: The non-destructive testing of adhesively bonded structure: a review. J. Adhes. 20(2), 129–159 (1986). https://doi.org/10.1080/00218468608074943

    Article  Google Scholar 

  4. Jhang, K.Y., Lissenden, C.J., Solodov, I., Ohara, Y., Gusev, V. (eds.): Measurement of Nonlinear Ultrasonic Characteristics. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1461-6

  5. Yan, D., Drinkwater, B.W., Neild, S.A.: Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints. NDT & E Int. 42(5), 459–466 (2009). https://doi.org/10.1016/j.ndteint.2009.02.002

    Article  Google Scholar 

  6. Nagy, P.B.: Ultrasonic classification of imperfect interfaces. J. Adhes. Sci. Technol. 11(3), 127–139 (1992). https://doi.org/10.1007/BF00566404

    Article  Google Scholar 

  7. Kundu, T., Maji, A., Ghosh, T., Maslov, K.: Detection of kissing bonds by Lamb waves. Ultrasonics. 35(8), 573–580 (1998). https://doi.org/10.1016/S0041-624X(97)00095-4

    Article  Google Scholar 

  8. Alston, J., Croxford, A., Potter, J., Blanloeuil, P.: Nonlinear non-collinear ultrasonic detection and characterization of kissing bonds. NDT & E Int. 99, 105–116 (2018). https://doi.org/10.1016/j.ndteint.2018.07.003

    Article  Google Scholar 

  9. Brotherhood, C.J., Drinkwater, B.W., Guild, F.J.: The effect of compressive loading on the ultrasonic detectability of kissing bonds in adhesive joints. J. Nondestructive Evaluation. 21(3), 95–104 (2002). https://doi.org/10.1023/A:1022584822730

    Article  Google Scholar 

  10. Roach, D., Rackow, K., Duvall, R.: Innovative use of adhesive interface characteristics to nondestructively quantify the strength of bonded joints. In: Proceedings of the 10th European Conference on Non-destructive Testing, Moscow, pp. 3263–3277 (2010)

  11. Biwa, S., Hiraiwa, S., Matsumoto, E.: Experimental and theoretical study of harmonic generation at contacting interface. Ultrasonics. 44, e1319–e1322 (2006). https://doi.org/10.1016/j.ultras.2006.05.010

    Article  Google Scholar 

  12. Nagy, P.B.: Ultrasonic detection of kissing bonds at adhesive interfaces. J. Adhes. Sci. Technol. 5(8), 619–630 (1991). https://doi.org/10.1163/156856191X00521

    Article  Google Scholar 

  13. Jeenjitkaew, C., Guild, F.J.: The analysis of kissing bonds in adhesive joints. Int. J. Adhes. Adhes. 75, 101–107 (2017). https://doi.org/10.1016/j.ijadhadh.2017.02.019

    Article  Google Scholar 

  14. Marty, P.N., Desai, N., Andersson, J.: NDT of kissing bond in aeronautical structures. In: Proceedings of the 16th world conference on NDT (2004)

  15. Jeenjitkaew, C., Luklinska, Z., Guild, F.: Morphology and surface chemistry of kissing bonds in adhesive joints produced by surface contamination. Int. J. Adhes. Adhes. 30(7), 643–653 (2010). https://doi.org/10.1016/j.ijadhadh.2010.06.005

    Article  Google Scholar 

  16. Maeva, E., Severina, I., Bondarenko, S., Chapman, G., O’Neill, B., Severin, F., Maev, R.G.: Acoustical methods for the investigation of adhesively bonded structures: A review. Can. J. Phys. 82(12), 981–1025 (2004). https://doi.org/10.1139/p04-056

    Article  Google Scholar 

  17. Ehrhart, B., Ecault, R., Touchard, F., Boustie, M., Berthe, L., Bockenheimer, C., Valeske, B.: Development of a laser shock adhesion test for the assessment of weak adhesive bonded CFRP structures. Int. J. Adhes. Adhes. 52, 57–65 (2014). https://doi.org/10.1016/j.ijadhadh.2014.04.002

    Article  Google Scholar 

  18. Wood, M., Charlton, P., Yan, D.: Ultrasonic evaluation of artificial kissing bonds in CFRP composites. e-Journal of NDT. 19(12) (2014)

  19. Tighe, R.C., Dulieu-Barton, J.M., Quinn, S.: Identification of kissing defects in adhesive bonds using infrared thermography. Int. J. Adhes. Adhes. 64, 168–178 (2016). https://doi.org/10.1016/j.ijadhadh.2015.10.018

    Article  Google Scholar 

  20. Kumar, R.V., Bhat, M.R., Murthy, C.R.L.: Evaluation of kissing bond in composite adhesive lap joints using digital image correlation: preliminary studies. Int. J. Adhes. Adhes. 42, 60–68 (2013). https://doi.org/10.1016/j.ijadhadh.2013.01.004

    Article  Google Scholar 

  21. Wang, P., Li, Z., Zhou, L., Pei, Y.: Microwave nondestructive detection and quantitative evaluation of kissing defects in GFRP laminates. Compos. Sci. Technol. 162, 117–122 (2018). https://doi.org/10.1016/j.compscitech.2018.04.029

    Article  Google Scholar 

  22. Chen, B.Y., Soh, S.K., Lee, H.P., Tay, T.E., Tan, V.B.: A vibro-acoustic modulation method for the detection of delamination and kissing bond in composites. J. Compos. Mater. 50(22), 3089–3104 (2016). https://doi.org/10.1177/0021998315615652

    Article  Google Scholar 

  23. Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precision Eng. Manuf. 10(1), 123–135 (2009). https://doi.org/10.1007/s12541-009-0019-y

    Article  Google Scholar 

  24. Solodov, I.Y., Krohn, N., Busse, G.: CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics. 40(1–8), 621–625 (2002). https://doi.org/10.1016/S0041-624X(02)00186-5

    Article  Google Scholar 

  25. Van Den Abeele, K.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). J. Res. Nondestruct. Eval. 12(1), 17–30 (2000). https://doi.org/10.1080/09349840009409646

    Article  Google Scholar 

  26. Van Den Abeele, K.E., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT & E International. 34(4), 239–248 (2001). https://doi.org/10.1016/S0963-8695(00)00064-5

    Article  Google Scholar 

  27. Ohara, Y., Mihara, T., Yamanaka, K.: Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound. Ultrasonics. 44(2), 194–199 (2006). https://doi.org/10.1016/j.ultras.2005.10.006

    Article  Google Scholar 

  28. Richardson, J.M.: Harmonic generation at an unbonded interface—I. Planar interface between semi-infinite elastic media. Int. J. Eng. Sci. 17(1), 73–85 (1979). https://doi.org/10.1016/0020-7225(79)90008-9

    Article  MATH  Google Scholar 

  29. Zhang, Z., Nagy, P.B., Hassan, W.: Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface. Ultrasonics. 65, 165–176 (2016). https://doi.org/10.1016/j.ultras.2015.09.021

    Article  Google Scholar 

  30. Kim, J., Jhang, K.Y., Kim, C.: Dependence of nonlinear ultrasonic characteristic on second-phase precipitation in heat-treated Al 6061-T6 alloy. Ultrasonics. 82, 84–90 (2018). https://doi.org/10.1016/j.ultras.2017.07.015

    Article  Google Scholar 

  31. Metya, A., Ghosh, M., Parida, N., Sagar, S.P.: Higher harmonic analysis of ultrasonic signal for ageing behaviour study of C-250 grade maraging steel. NDT & E Int. 41(6), 484–489 (2008). https://doi.org/10.1016/j.ndteint.2008.01.008

    Article  Google Scholar 

  32. Cantrell, J.H.: Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. R. Soc. Lond. A 460(2043), 757–780 (2004). https://doi.org/10.1098/rspa.2003.1181

    Article  MATH  Google Scholar 

  33. Nagy, P.B.: Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics. 36(1–5), 375–381 (1998). https://doi.org/10.1016/S0041-624X(97)00040-1

    Article  Google Scholar 

  34. Shui, G., Wang, Y.S., Huang, P., Qu, J.: Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints. NDT & E Int. 70, 9–15 (2015). https://doi.org/10.1016/j.ndteint.2014.11.002

    Article  Google Scholar 

  35. Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue. 23, 487–490 (2001). https://doi.org/10.1016/S0142-1123(01)00162-1

    Article  Google Scholar 

  36. Ruiz, A., Ortiz, N., Medina, A., Kim, J.Y., Jacobs, L.J.: Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel. NDT & E Int. 54, 19–26 (2013). https://doi.org/10.1016/j.ndteint.2012.11.009

    Article  Google Scholar 

  37. Balasubramaniam, K., Valluri, J.S., Prakash, R.V.: Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Mater. Charact. 62(3), 275–286 (2011). https://doi.org/10.1016/j.matchar.2010.11.007

    Article  Google Scholar 

  38. Barnard, D.J., Dace, G.E., Rehbein, D.K., Buck, O.: Acoustic harmonic generation at diffusion bonds. J. Nondestruct. Eval. 16(2), 77–89 (1997). https://doi.org/10.1007/BF02683880

    Article  Google Scholar 

  39. Brotherhood, C.J., Drinkwater, B.W., Dixon, S.: The detectability of kissing bonds in adhesive joints using ultrasonic techniques. Ultrasonics. 41(7), 521–529 (2003). https://doi.org/10.1016/S0041-624X(03)00156-2

    Article  Google Scholar 

  40. Pyun, D.K., Koester, L.W., Barnard, D.J., Bond, L.J.: Nonlinear ultrasonic inspection of cohesive failure in adhesive due to contaminants in the manufacturing process. Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XVI. SPIE. 12047, 75–82 (2022). https://doi.org/10.1117/12.2612271

    Article  Google Scholar 

  41. Park, S.J., Jin, F.L., Lee, J.R.: Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater. Sci. Eng. A 374(1–2), 109–114 (2004). https://doi.org/10.1016/j.msea.2004.01.002

    Article  Google Scholar 

  42. Yin, H., Jin, H., Wang, C., Sun, Y., Yuan, Z., Xie, H., Xie, H., Wang, Z., Cheng, R.: Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J. Therm. Anal. Calorim. 115(2), 1073–1080 (2014). https://doi.org/10.1007/s10973-013-3449-9

    Article  Google Scholar 

  43. Jhang, K.Y.: Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans. Ultrason. Ferroelectr. Freq. control. 47(3), 540–548 (2000). https://doi.org/10.1109/58.842040

    Article  Google Scholar 

  44. Dace, G.E., Thompson, R.B., Buck, O.: Measurement of the acoustic harmonic generation for materials characterization using contact transducers. Rev. Progress Quant. Nondestructive Evaluation. 11B, 2069–2076 (1992)

    Google Scholar 

  45. Chakrapani, S.K., Howard, A., Barnard, D.: Influence of surface roughness on the measurement of acoustic nonlinearity parameter of solids using contact piezoelectric transducers. Ultrasonics. 84, 112–118 (2018). https://doi.org/10.1016/j.ultras.2017.10.022

    Article  Google Scholar 

  46. Shui, G., Song, X., Xi, J., Wang, Y.S.: Experimental characterization of impact fatigue damage in an adhesive bonding using the second harmonics. J. Nondestruct. Eval. 36(2), 23 (2017). https://doi.org/10.1007/s10921-017-0407-7

    Article  Google Scholar 

  47. Cole, K.C.: A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 1. Mathematical development. Macromolecules. 24(11), 3093–3097 (1991). https://doi.org/10.1021/ma00011a011

    Article  Google Scholar 

  48. Blanloeuil, P., Meziane, A., Bacon, C.: Numerical study of nonlinear interaction between a crack and elastic waves under an oblique incidence. Wave Motion. 51(3), 425–437 (2014). https://doi.org/10.1016/j.wavemoti.2013.10.002

    Article  MathSciNet  MATH  Google Scholar 

  49. Gopinath, A., Kumar, M.S., Elayaperumal, A.: Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Proc. Eng. 97, 2052–2063 (2014). https://doi.org/10.1016/j.proeng.2014.12.448

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported, in part, by a R. Bruce Thompson Graduate Fellowship in Center for Nondestructive Evaluation (CNDE) in Iowa State University. The authors include as a co-author Lucas Koester who contributed to this work. He died unexpectedly (March 16, 2022) just before this paper was completed. Lucas was a great field and colleague who will be greatly missed by all who knew him.

Author information

Authors and Affiliations

Authors

Contributions

DP graduate student - performed experiments and worked on manuscript. LK and DB staff scientists at CNDE - assisted DP with experiments and contributed to manuscript. LJB major professor - worked with DP on project, developed and supervised research, edited final version of manuscript. All except LK reviewed final manuscript (he died March 16, 2022).

Corresponding author

Correspondence to Leonard J. Bond.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyun, DK., Koester, L.W., Barnard, D.J. et al. Nonlinear Ultrasonic Inspection of the Effect of Contaminants on Material Properties of Epoxy-Adhesive. J Nondestruct Eval 41, 75 (2022). https://doi.org/10.1007/s10921-022-00904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00904-y

Keywords

Navigation