Skip to main content
Log in

Sparse Structural Principal Component Thermography for Defect Signal Enhancement in Subsurface Defects Detection of Composite Materials

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Statistical methods, such as Principal component thermography (PCT) and Sparse Principal component thermography (SPCT) have been widely used for signal enhancement of subsurface defects in pulsed thermographic (PT) detection of composite materials. However, PCT and SPCT mainly focus on the temporal variation of thermographic data while leaving the structural variation un-modeled. In this paper, a method of sparse structural principal component thermography (S2PCT) is proposed. In S2PCT, the operation of shift-sampling is first conducted to augment the original thermographic matrix and capture the structural relationships inside the original thermal images. After that, the sparse trick is applied to extract features for defects and reduce signals of noise and non-uniform background. In the case study, two carbon fiber reinforced polymer (CFRP) specimens are detected with PT and the proposed S2PCT is evaluated for visualization enhancing purpose. The results of the experiments have revealed the proposed method helps to highlight the defect signals during the augmentation process, thus showing higher flexibility in reducing interference from background signals. As a conclusion, compared to the original statistical methods, S2PCT has better performance in visualization enhancing of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Moskovchenk, A.I., Vavilov, V.P., Bernegger, R., Maierhofer, C., Chulko, A.O.: Detecting delaminations in semitransparent glass fiber composite by using pulsed infrared thermography. J. Nondestruct. Eval. 39(3), 1–10 (2020). https://doi.org/10.1007/s10921-020-00717-x

    Article  Google Scholar 

  2. Tran, G.H., Huh, J., Kang, C., Lee, B.Y., Kim, I.T., Ahn, J.H.: Detectability of subsurface defects with different width-to-depth ratios in concrete structures using pulsed thermography. J. Nondestruct. Eval. 37(2), 32 (2018). https://doi.org/10.1007/s10921-018-0489-x

    Article  Google Scholar 

  3. Liu, L., Wang, L., Guo, C., Mei, H., Zhao, C.: Detecting defects in porcelain postinsulator coated with room temperature vulcanized silicone rubber by Pulsed Thermography. IEEE Trans. Instrum. Meas. 68(1), 225–233 (2019). https://doi.org/10.1109/TIM.2018.2834157

    Article  Google Scholar 

  4. Burghold, E.M., Frekers, Y., Kneer, R.: Transient contact heat transfer measurements based on high-speed IR-thermography. Int. J. Therm. Sci. 115(1), 169–175 (2017). https://doi.org/10.1016/j.ijthermalsci.2017.01.019

    Article  Google Scholar 

  5. Plasser, H., Günther, M., Gregor, T., Günther, H., Major, Z.: Photothermal porosity estimation in CFRP by the time-of-flight of virtual waves. J. Nondestruct. Eval. (2020). https://doi.org/10.1007/s10921-020-00722-0

    Article  Google Scholar 

  6. Sirikham, A., Zhao, Y.F., Nezhad, H.Y., Du, W.X., Roy, R.: Estimation of damage thickness in fiber-reinforced composites using pulsed thermography. IEEE Trans. Ind. Inf. 15(1), 445–453 (2019). https://doi.org/10.1109/TII.2018.2878758

    Article  Google Scholar 

  7. Saeed, N., Abdulrahman, Y., Amer, S., Omar, M.A.: Experimentally validated defect depth estimation using artificial neural network in pulsed thermography. Infrared Phys. Technol. 98, 192–200 (2019). https://doi.org/10.1016/j.infrared.2019.03.014

    Article  Google Scholar 

  8. Wang, F., Wang, Y., Liu, J., Wang, Y.: The feature recognition of CFRP subsurface defects using low-energy chirp-pulsed radar thermography. IEEE Trans. Ind. Inf. 16(8), 5160–5168 (2020). https://doi.org/10.1109/TII.2019.2954718

    Article  Google Scholar 

  9. Zheng, K.Y., Chang, Y.S., Wang, K.H., Yao, Y.: Improved non-destructive testing of carbon fiber reinforced polymer (CFRP) composites using pulsed thermograph. Polym. Test. 46, 26–32 (2015). https://doi.org/10.1016/j.polymertesting.2015.06.016

    Article  Google Scholar 

  10. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Lopez, I.: Automatic detection of impact damage in carbon fiber composites using active thermography. Infrared Phys. Technol. 58, 36–46 (2013). https://doi.org/10.1016/j.infrared.2013.01.004

    Article  Google Scholar 

  11. Barbara, S., Unnikrishnakurup, S., Balasubramaniam, K.: Background removal methods in thermographic non-destructive testing of composite materials. In: NDE 2014 (2014)

  12. Hiasa, S., Birgul, R., Catbas, F.N.: Effect of defect size on subsurface defect detectability and defect depth estimation for concrete structures by infrared thermography. J. Nondestruct. Eval. 36(3), 57 (2017). https://doi.org/10.1007/s10921-017-0435-3

    Article  Google Scholar 

  13. Balageas, D.L., Roche, J.M., Leroy, F.H., Liu, W.M., Gorhach, A.M.: The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images. Biocybernet. Biomed. Eng. 35(1), 1–9 (2015). https://doi.org/10.1016/j.bbe.2014.07.002

    Article  Google Scholar 

  14. Benitez, H., Castanedo, C.I., Bendada, A.: Modified differential absolute contrast using thermal quadrupoles for the nondestructive testing of finite thickness specimens by infrared thermography. In: Conference on Electrical and Computer Engineering IEEE (2006)

  15. Guo, X.W., Liu, Y.T.: Pulsed phase thermography and its application in the NDT of composite materials. J. Beijing Univ. Aeronaut Astronaut 31(10), 1049–1053 (2005). https://doi.org/10.1016/j.cej.2014.10.016

    Article  Google Scholar 

  16. Gry, S.: Filtered thermal contrast based technique for testing of material by infrared thermography. Opto-Electron. Rev. 19(2), 234–241 (2011). https://doi.org/10.2478/s11992-011-0009-3

    Article  Google Scholar 

  17. Giron, R., Andres, D., Correa, H.L.: Background thermal compensation by filtering for contrast enhancement in active thermography. J. Nondestruct. Eval. 35(1), 1–11 (2016). https://doi.org/10.1007/s10921-016-0336-x

    Article  Google Scholar 

  18. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58(4), 521–528 (2002). https://doi.org/10.1016/S0263-8223(02)00161-7

    Article  Google Scholar 

  19. Zheng, K.Y., Chang, Y.S., Yao, Y.: Defect detection in CFRP structures using pulsed thermographic data enhanced by penalized least squares methods. Compos. B Eng. 79(9), 351–358 (2015). https://doi.org/10.1016/j.compositesb.2015.04.049

    Article  Google Scholar 

  20. Liu, Y., Wu, Y., Liu, K.X., Wen, H.L., Yao, Y., et al.: Independent component thermography for non-destructive testing of defects in polymer composites. Meas. Sci. Technol. (2019). https://doi.org/10.1088/1361-6501/ab02db

    Article  Google Scholar 

  21. Liu, Y., Liu, K., Yang, J., Yao, Y.: Spatial-neighborhood manifold learning for nondestructive testing of defects in polymer composites. IEEE Trans. Ind. Inf. 99, 1–1 (2019). https://doi.org/10.1109/TII.2019.2949358

    Article  Google Scholar 

  22. Zhou, D., Chi, M.: Pulse-coupled neural network and its optimization for segmentation of electrical faults with infrared thermography. Appl. Soft Comput. (2019). https://doi.org/10.1016/j.asoc.2018.10.056

    Article  Google Scholar 

  23. Wu, J.Y., Sfarra, S., Yao, Y.: Sparse principal component thermography for subsurface defect detection in composite products. IEEE Trans. Ind. Inf. 99(3), 1 (2018). https://doi.org/10.1109/TII.2018.2817520

    Article  Google Scholar 

  24. Wen, C.M., Sfarra, S., Gargiulo, G., Yao, Y.: Edge-group sparse principal component thermography for defect detection in an ancient marquetry sample. Proceedings 27(1), 34 (2019)

  25. Liu, K., Li, Y., Yang, J., Liu, Y., Yao, Y.: Generative principal component thermography for enhanced defect detection and analysis. IEEE Trans. Instrum. Meas. 99, 1–1 (2020). https://doi.org/10.1109/TIM.2020.2992873

    Article  Google Scholar 

  26. Jie, J., Dai, S., Hou, B., Zhang, M., Zhou, L.: Defect detection in composite products based on sparse moving window principal component thermography. Adv. Polym. Technol. 2020(2), 1–12 (2020). https://doi.org/10.1155/2020/4682689

    Article  Google Scholar 

  27. Abdi, H., Williams, L.J.: Principal component analysis. Comput. Stat. 2(4), 433–459 (2002). https://doi.org/10.2307/3172953

    Article  Google Scholar 

  28. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67(2), 301–320 (2005). https://doi.org/10.1111/j.1467-9868.2005.00527.x

    Article  MathSciNet  MATH  Google Scholar 

  29. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. R. Stat. Soc. Ser. B 15, 265–286 (2006). https://doi.org/10.1198/106186006X113430

    Article  MathSciNet  Google Scholar 

  30. Liu, Q., Mo, Z.W., Wu, Y.H., Ma, J.B., Tsui, G., Hui, D.: Crush response of CFRP square tube filled with aluminum honeycomb. Compos. Part B Eng. 98, 406–414 (2016). https://doi.org/10.1016/j.compositesb.2016.05.048

    Article  Google Scholar 

  31. Taljsten, B., Carolin, A., Nordin, H.: Concrete structures strengthened with near surface mounted reinforcement of CFRP. Adv. Struct. Eng. 6(3), 201–213 (2016). https://doi.org/10.1260/136943303322419223

    Article  Google Scholar 

  32. Liu, S.F., Cheng, X.Q., Zhang, Q., Zhang, J.: An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates. Compos. Part B Eng. 91(15), 431–440 (2016). https://doi.org/10.1016/j.compositesb.2016.01.051

    Article  Google Scholar 

  33. Artner, G., Langwieser, R., Mecklenbrauker, C.F.: Concealed CFRP vehicle chassis antenna cavity. IEEE Antennas Wirel. Propag. Lett. 16, 1415–1418 (2016). https://doi.org/10.1109/LAWP.2016.2637560

    Article  Google Scholar 

  34. Feng, B., Pasadas, D.J., Ribeiro, A.L., Ramos, H.G.: Locating defects in anisotropic CFRP plates using ToF-based probability matrix and neural networks. IEEE Trans. Instrum. Meas. 68(5), 1252–1260 (2019). https://doi.org/10.1109/TIM.2019.2893701

    Article  Google Scholar 

  35. Moskovchenko, A.I., Vavilov, V.P., Chulkov, A.O.: Comparing the efficiency of defect depth characterization algorithms in the inspection of CFRP by using one-sided pulsed thermal NDT. Infrared Phys. Technol. 107, 103289 (2020). https://doi.org/10.1016/j.infrared.2020.103289

    Article  Google Scholar 

  36. Foudazi, A., Edwards, C.A., Ghasr, M.T., Donnell, K.M.: Active microwave thermography for defect detection of CFRP-strengthened cement-based materials. IEEE Trans. Instrum. Meas. 65(11), 2612–2620 (2016). https://doi.org/10.1109/TIM.2016.2596080

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Zhejiang Provincial Natural Science Foundation of China (LY19F030003), Educational Commission Research Program of Zhejiang Province (Y202044842) and National Natural Science Foundation of China (62003306)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Hou, B., Wang, Y. et al. Sparse Structural Principal Component Thermography for Defect Signal Enhancement in Subsurface Defects Detection of Composite Materials. J Nondestruct Eval 41, 8 (2022). https://doi.org/10.1007/s10921-021-00838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00838-x

Keywords

Navigation