Skip to main content
Log in

Influence of the Microstructure on Magnetic Stray Fields of Low-Carbon Steel Welds

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jiles, D.C.: Microstructure and stress dependence of the magnetic properties of steels. In: Review of Progress in Quantitative Nondestructive Evaluation, vol 9, pp. 1821–1827, Springer, Boston (1990). https://doi.org/10.1007/978-1-4684-5772-8_234

    Chapter  Google Scholar 

  2. Liu, T., Kikuchi, H., Ara, K., Kamad, Y., Takahashi, S.: Magnetomechanical effect of low carbon steel studied by two kinds of magnetic minor hysteresis loops. NDT E Int. 39(5), 408–413 (2006). https://doi.org/10.1016/j.ndteint.2005.12.001

    Article  Google Scholar 

  3. Seeger, A., Kronmüller, H., Rieger, H., Träuble, H.: Effect of lattice defects on the magnetization curve of ferromagnets. J. Appl. Phys 35(1964), 740–748 (1964). https://doi.org/10.1063/1.1713460

    Article  Google Scholar 

  4. Bozorth, R.M.: Ferromagnetism. Wiley-IEEE Press, Hoboken (2003)

    Google Scholar 

  5. Cullity, B.D.: Fundamentals of magnetostriction. JOM 23(1), 35–41 (1971). https://doi.org/10.1007/BF03355677

    Article  Google Scholar 

  6. Becker, R.: Zur Theorie der Magnetisierungskurve. Zeitschrift für Phys. 62(3–4), 253–269 (1930). https://doi.org/10.1007/BF01339797

    Article  Google Scholar 

  7. Joule, J.: XVII. On the effects of magnetism upon the dimensions of iron and steel bars. Philos. Mag. Ser. 3 30(199), 76–87 (1847). https://doi.org/10.1080/14786444708645656

    Article  Google Scholar 

  8. Villari, E.: Ueber die Aenderungen des magnetischen Moments, welche der Zug und das Hindurchleiten eines galvanischen Stroms in einem Stabe von Stahl oder Eisen hervorbringen. Ann. Phys. Chem. 202(9), 87–122 (1865). https://doi.org/10.1002/andp.18652020906

    Article  Google Scholar 

  9. Jiles, D.C.: Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 28(8), 1537–1546 (1995). https://doi.org/10.1088/0022-3727/28/8/001

    Article  Google Scholar 

  10. Polanschütz, W.: Inverse magnetostrictive effect and electromagnetic non-destructive testing methods. NDT Int. 19(4), 249–258 (1986). https://doi.org/10.1016/0308-9126(86)90071-4

    Article  Google Scholar 

  11. Yamasaki, T., Yamamoto, S., Hirao, M.: Effect of applied stresses on magnetostriction of low carbon steel. NDT E Int. 29(5), 263–268 (1996). https://doi.org/10.1016/S0963-8695(96)00028-X

    Article  Google Scholar 

  12. Dorsey, H.G.: Magnetostriction in iron-carbon alloys. Phys. Rev. (Ser. I) 30(6), 698–719 (1910). https://doi.org/10.1103/PhysRevSeriesI.30.698

    Article  Google Scholar 

  13. Jiles, D.C.: The effect of compressive plastic deformation on the magnetic properties of AISI 4130 steels with various microstructures. J. Phys. D Appl. Phys. 21(7), 1196–1204 (1988). https://doi.org/10.1088/0022-3727/21/7/023

    Article  Google Scholar 

  14. Bozorth, R.M., Williams, H.J.: Effect of small stresses on magnetic properties. Rev. Mod. Phys. (1945). https://doi.org/10.1103/RevModPhys.17.72

    Article  Google Scholar 

  15. Schneider, C.S.: Cooperative anistropic theory of ferromagnetic hysteresis. In: Caruta, B.M. (ed.) Trends in Materials Science Research, pp. 1–48. Nova Science Publishers, New York (2006). chap 1

    Google Scholar 

  16. Li, L., Jiles, D.C.: Modeling of the magnetomechanical effect: application of the Rayleigh law to the stress domain. J. Appl. Phys. 93(10), 8480–8482 (2003). https://doi.org/10.1063/1.1540059

    Article  Google Scholar 

  17. Hubert, A., Schäfer, R.: Magnetic Domains, 3rd edn. Springer, Berlin (1998). https://doi.org/10.1007/978-3-540-85054-0

    Book  Google Scholar 

  18. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, 2nd edn. Wiley-IEEE Press, Hoboken, NJ (2009)

    Google Scholar 

  19. Bulte, D.P., Langman, R.A.: Origins of the magnetomechanical effect. J. Magn. Magn. Mater. 251(2), 229–243 (2002). https://doi.org/10.1016/S0304-8853(02)00588-7

    Article  Google Scholar 

  20. Coey, J.M.D.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  21. Sablik, M.J.: Modeling the effects of biaxial stress on magnetic properties of steels with application to biaxial stress NDE. Nondestruct. Test. Eval. 12(2), 87–102 (1995). https://doi.org/10.1080/10589759508952837

    Article  Google Scholar 

  22. Schneider, C.S., Cannell, P.Y., Watts, K.T.: Magnetoelasticity for large stresses. IEEE Trans. Magn. 28(5), 2626–2631 (1992). https://doi.org/10.1109/20.179578

    Article  Google Scholar 

  23. Spano, M.L., Hathaway, K.B., Savage, H.T.: Magnetostriction and magnetic anisotropy of field annealed Metglas* 2605 alloys via dc M-H loop measurements under stress. J. Appl. Phys. 53(3), 2667–2669 (1982). https://doi.org/10.1063/1.330932

    Article  Google Scholar 

  24. Langman, R.: Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength—part 2: biaxial stress. NDT Int. 15(2), 91–97 (1982). https://doi.org/10.1016/0308-9126(82)90003-7

    Article  Google Scholar 

  25. Langman, R.: Magnetic properties of mild steel under conditions of biaxial stress. IEEE Trans. Magn. 26(4), 1246–1251 (1990). https://doi.org/10.1109/20.54015

    Article  Google Scholar 

  26. Buttle, D.J., Dalzell, W., Scruby, C.B., Langman, R.A.: Comparison of three magnetic techniques for biaxial stress measurement. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1879–1885. Springer, Boston, MA (1990). https://doi.org/10.1007/978-1-4684-5772-8_241

    Chapter  Google Scholar 

  27. Schneider, C.S., Richardson, J.M.: Biaxial magnetoelasticity in steels. J. Appl. Phys. 53(11), 8136–8138 (1982). https://doi.org/10.1063/1.330341

    Article  Google Scholar 

  28. Sablik, M.J., Riley, L.A., Burkhardt, G.L., Kwun, H., Cannell, P.Y., Watts, K.T., Langman, R.A.: Micromagnetic model for biaxial stress effects on magnetic properties. J. Magn. Magn. Mater. 132(1–3), 131–148 (1994). https://doi.org/10.1016/0304-8853(94)90307-7

    Article  Google Scholar 

  29. von Mises, R.: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttigen, Math Klasse, pp. 582–592 (1913)

  30. Craik, D.J., Wood, M.J.: Magnetization changes induced by stress in a constant applied field. J. Phys. D Appl. Phys. 3(7), 1009–1016 (1970). https://doi.org/10.1088/0022-3727/3/7/303

    Article  Google Scholar 

  31. Makar, J.M., Tanner, B.K.: Effect of plastic deformation and residual stress on the permeability and magnetostriction of steels. J. Magn. Magn. Mater. 222, 291–304 (2000). https://doi.org/10.1016/S0304-8853(00)00558-8

    Article  Google Scholar 

  32. Schneider, C.S.: Effect of stress on the shape of ferromagnetic hysteresis loops. J. Appl. Phys. 97, 10E503 (2005). https://doi.org/10.1063/1.1846451

    Article  Google Scholar 

  33. Becker, R.: Elastische Spannungen und magnetische Eigenschaften. Phys. Zeitschrift 33(23), 905–913 (1932)

    MATH  Google Scholar 

  34. Kersten, M.: Zur magnetischen Analyse der inneren Spannungen. II. Zeitschrift für Phys. 82(11–12), 723–728 (1933). https://doi.org/10.1007/BF01334119

    Article  Google Scholar 

  35. Kersten, M.: Zur magnetischen Analyse der inneren Spannungen. Zeitschrift für Phys. 76(7–8), 505–512 (1932). https://doi.org/10.1007/BF01336732

    Article  Google Scholar 

  36. Perevertov, O., Schäfer, R.: Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe-3Si steel. J. Phys. D Appl. Phys. 45(13), 135001 (2012). https://doi.org/10.1088/0022-3727/45/13/135001

    Article  Google Scholar 

  37. Perevertov, O., Schäfer, R.: Influence of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented Fe-3%Si steel. J. Phys. D Appl. Phys. 47(18), 185001 (2014). https://doi.org/10.1088/0022-3727/47/18/185001

    Article  Google Scholar 

  38. Perevertov, O.: Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe-3%Si non-oriented steel. J. Magn. Magn. Mater. 428, 223–228 (2017). https://doi.org/10.1016/j.jmmm.2016.12.040

    Article  Google Scholar 

  39. Weman, K.: Welding Processes Handbook, 2nd edn. Woodhead Publishing Limited, Cambridge (2011)

    Book  Google Scholar 

  40. Theiner, W.A., Altpeter, I.: Determination of residual stresses using micromagnetic parameters. In: Höller, P. (ed.) New Procedures in Nondestructive Testing, pp. 575–585. Springer, Berlin (1983). https://doi.org/10.1007/978-3-662-02363-1_49

    Chapter  Google Scholar 

  41. ISO/TS 21432:2005 (2007) Non-destructive testing—standard test method for determining residual stresses by neutron diffraction

  42. Lorentzen, T., Hutchings, M., Withers, P., Holden, T.: Introduction to the Characterization of Residual Stress by Neutron Diffraction. CRC Press, Boca Raton (2005). https://doi.org/10.1201/9780203402818

    Book  Google Scholar 

  43. Stegemann, R., Cabeza, S., Lyamkin, V., Bruno, G., Pittner, A., Wimpory, R., Boin, M., Kreutzbruck, M.: Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings. J. Magn. Magn. Mater. 426(15), 580–587 (2017). https://doi.org/10.1016/j.jmmm.2016.11.102

    Article  Google Scholar 

  44. DIN EN ISO 643:2012: Stahl- Mikrophotographische Bestimmung der erkennbaren Korngröße (2012)

  45. DIN 50159-1: Metallische Werkstoffe - Härteprüfung nach dem UCI-Verfahren (2008)

  46. Helmholtz-Zentrum Berlin für Materialien und Energie: E3: Residual stress neutron diffractometer at BER II. J. Large-Scale Res. Facil. (2016). https://doi.org/10.17815/jlsrf-2-126

  47. Hughes, D.J., Hattingh, M.N.J.D.G., Webster, P.J.: The use of combs for evaluation of strain-free references for residual strain measurements by neutron and synchrotron X-ray diffraction. J. Neutron Res. 11(December), 289–293 (2003). https://doi.org/10.1080/10238160410001726765

    Article  Google Scholar 

  48. Krawitz, A.D., Winholtz, R.A.: Use of position-dependent stress-free standards for diffraction stress measurements. Mater. Sci. Eng. A 185(1–2), 123–130 (1994). https://doi.org/10.1016/0921-5093(94)90935-0

    Article  Google Scholar 

  49. Behnken, H., Hauk, V.: Berechnung der röntgenographischen Elastizitätskonstanten (REK) des Vielkristalls aus Einkristalldaten für beliebige Kristallsymmetrie. Zeitschrift für Met. 77, 620–626 (1986)

    Google Scholar 

  50. Pelkner, M., Neubauer, A., Reimund, V., Kreutzbruck, M., Schütze, A.: Routes for GMR-sensor design in non-destructive testing. Sensors 12, 12169–12183 (2012). https://doi.org/10.3390/s120912169

    Article  Google Scholar 

  51. Pelkner, M.: Entwicklung, Untersuchung und Anwendung von GMR-Sensorarrays für die Zerstörungsfreie Prüfung von ferromagnetischen Bauteilen. Dissertation, Universität des Saarlandes (2014)

  52. Glenske, C., Loreit, U.: New 3D-magnetic field sensors with GMR-spin valve layers. In: 10th Symposium Magnetoresistive Sensors Magnetic Systems, pp. 79–86 (2009)

  53. Laudien, U., Müller, M., Schulze, G., Teske, G.: DVS-Gefügerichtreihe Stahl. Deutscher Verlag für Schweisstechnik (DVS) GmbH, Düsseldorf (1979)

  54. Gharibshahiyan, E., Raouf, A.H., Parvin, N., Rahimian, M.: The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding. Mater. Des. 32(4), 2042–2048 (2011). https://doi.org/10.1016/j.matdes.2010.11.056

    Article  Google Scholar 

  55. Pang, W., Ahmed, N., Dunne, D.: Hardness and microstructural gradients in the heat affected zone of welded low-carbon quenched and tempered steels. Aust. Weld. J. 56(2), 36–48 (2011)

    Google Scholar 

  56. Bhole, S.D., Nemade, J.B., Collins, L., Liu, C.: Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel. J. Mater. Process. Technol. 173(1), 92–100 (2006). https://doi.org/10.1016/j.jmatprotec.2005.10.028

    Article  Google Scholar 

  57. Macherauch, E.: Introduction To Residual Stress. In: Niku-Lari, A. (ed.) Residual Stress, pp. 1–36. Pergamon Books Ltd, Oxford (1987). https://doi.org/10.1016/B978-0-08-034062-3.50011-2

    Chapter  Google Scholar 

  58. Thompson, S.M., Allen, P.J., Tanner, B.K.: Magnetic properties of welds in high-strength pearlitic steels. IEEE Trans. Magn. 26(5), 1984–1986 (1990). https://doi.org/10.1109/20.104591

    Article  Google Scholar 

  59. DIN EN ISO 18265:2013: Metallic materials—conversion of hardness values (2014)

  60. Hodgson, P., Hickson, M., Gibbs, R.: The production and mechanical properties of ultrafine ferrite. Mater. Sci. Forum 284–286, 63–72 (1998). https://doi.org/10.4028/www.scientific.net/MSF.284-286.63

    Article  Google Scholar 

  61. Wellinger, K., Eichhorn, F., Gimmel, P.: Schweissen. Alfred Kröner Verlag, Stuttgart (1964)

    Google Scholar 

  62. Bruno, G.: Relaxation of residual stress in AISI 347 welded pipe: a time-of-flight neutron diffraction study. Zeitschrift für Met. 93(1), 33–41 (2002). https://doi.org/10.3139/146.020033

    Article  MathSciNet  Google Scholar 

  63. Stegemann, R., Cabeza, S., Pelkner, M., Lyamkin, V., Sonntag, N., Bruno, G., Skrotzki, B., Kreutzbruck, M.: Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection. In: Bond, L.J., Chimenti, D.E. (eds.) AIP Conference Proceedings, AIP Publishing, Melville, NY, USA, vol 1806, pp. 110010–1–110010–10 (2017). https://doi.org/10.1063/1.4974688

  64. Spooner, S.: Neutron residual stress measurement in welds, chap 18. In: Fitzpatrick, M.E., Lodini, A. (eds.) Analysis of Residual Stress by Diffraction Using Neutron Synchrotron Radiation, pp. 296–318. Taylor a Francis, London (2003)

    Chapter  Google Scholar 

  65. Winholtz, R.A., Krawitz, A.D.: The effect of assuming the principal directions in neutron diffraction measurement of stress tensors. Mater. Sci. Eng. A 205(1–2), 257–258 (1996a). https://doi.org/10.1016/0921-5093(95)10040-7

    Article  Google Scholar 

  66. Winholtz, R.A., Krawitz, A.D.: Implications of equilibrium on principal macrostresses measured by neutron diffraction. Mater. Sci. Eng. A 221(1–2), 33–37 (1996b). https://doi.org/10.1016/S0921-5093(96)10481-0

    Article  Google Scholar 

  67. Krawitz, A.D., Winholtz, R.A., Weisbrook, C.M.: Relation of elastic strain distributions determined by diffraction to corresponding stress distributions. Mater. Sci. Eng. A 206(2), 176–182 (1996). https://doi.org/10.1016/0921-5093(95)10018-0

    Article  Google Scholar 

  68. Hauk, V.: Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier Science B.V, Amsterdam (1997)

    MATH  Google Scholar 

  69. Perevertov, O.: Influence of the residual stress on the magnetization process in mild steel. J. Phys. D Appl. Phys. 40, 949–954 (2007). https://doi.org/10.1088/0022-3727/40/4/004

    Article  Google Scholar 

  70. Takahashi, S., Kobayashi, S., Kikuchi, H., Kamada, Y.: Relationship between mechanical and magnetic properties in cold rolled low carbon steel. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2401048

    Article  Google Scholar 

  71. Tanner, B.K., Szpunar, J.A., Willcock, S.N.M., Morgan, L.L., Mundell, P.A.: Magnetic and metallurgical properties of high-tensile steels. J. Mater. Sci. 23(12), 4534–4540 (1988). https://doi.org/10.1007/BF00551956

    Article  Google Scholar 

  72. Sablik, M.J., Jiles, D.C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans. Magn. 29(4), 2113–2123 (1993). https://doi.org/10.1109/20.221036

    Article  Google Scholar 

  73. Kvasnica, B., Fabo, P.: Highly precise non-contact instrumentation for magnetic measurement of mechanical stress in low-carbon steel wires. Meas. Sci. Technol. 7, 763–767 (1996). https://doi.org/10.1088/0957-0233/7/5/007

    Article  Google Scholar 

  74. Hinz, G., Voigth, H.: Magnetic Sensors, Sensors, A Comprehensive Survey, vol 5, VCH Verlagsgesellschaft mbH, Weinheim, chap Magnetoelastic Sensors, pp. 97–152 (2008) https://doi.org/10.1002/9783527620166.ch4

    Chapter  Google Scholar 

  75. Cullity, B.D.: Magnetic Methods. In: Proceedings a Work. Nondestructive Evaluation Resdiual Stress, pp. 227–236. NTIAC-76-2, San Antonio, TX (2017)

  76. DIN EN ISO 8249:2000: Welding—Determination of Ferrite Number (FN) in Austenitic and Duplex Ferritic-Austenitic Cr-Ni Stainless Steel Weld Metals (2000)

Download references

Acknowledgements

The authors thank N. Sonntag and B. Skrotzki for their support to our work by providing information, references and discussions. Special thanks to H. Sturm for his fruitful and cogent comments. The experimental work was supported by T. Michael, T. Mishurova, M. Weise, A. Böcker, A. Zunkel, J. Biermann, E. Köppe, L. Stempin and M. Kuffel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stegemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegemann, R., Cabeza, S., Pelkner, M. et al. Influence of the Microstructure on Magnetic Stray Fields of Low-Carbon Steel Welds. J Nondestruct Eval 37, 66 (2018). https://doi.org/10.1007/s10921-018-0522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0522-0

Keywords

Navigation