Skip to main content
Log in

On the Influences of Boundary Reflections and Piezoelectric Sensors to the Characteristics of Elastic Waves for Pattern Recognition Methods

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this study, the influences of boundary reflections and piezoelectric sensors on the detection of propagating elastic waves emitted from newly formed damage surfaces are demonstrated using numerical and experimental models. The concepts of the displacement-based, time-domain equations of non-splitting perfectly matched layer (PML) and spectral finite elements are utilized to facilitate computationally efficient modeling for high frequency wave propagation in large scale structures. The PML is an artificial layer, which provides an exponential decay regardless of frequency or angle of incidence and does not produce any reflection from the interface. The numerical result under ball drop impact excitation is validated with experimental measurements. The boundary reflections within small scale-coupon specimens modify the received wave characteristics such a way that transferring the laboratory scale data to other geometries for pattern recognition methods becomes a challenge. The features used in the pattern recognition algorithms cannot be scaled up to large-scale structures unless the experimental geometry is designed through considering the target wavelength, and the waveform record-window is limited to prevent the influence of reflected waves as well as the transfer function of piezoelectric sensor is taken into account. A model based on selecting the sample size as a function of wavelength is developed. The influence of piezoelectric sensors to the output signals is demonstrated such that the selected piezoelectric sensor controls the waveform features, which further limits the test repeatability under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Leone, F.A., Ozevin, D., Awerbuch, J., Tan, T.M.: Detecting and locating damage initiation and progression in full-scale sandwich composite fuselage panels using acoustic emission. J. Compos. Mater. 47(13), 1643–1664 (2013)

    Article  Google Scholar 

  2. Sung, D.U., Oh, J.H., Kim, C.G., Hong, C.S.: Impact monitoring of smart composite laminates using neural network and wavelet analysis. J. Intell. Mater. Syst. Struct. 11, 180–190 (2000)

    Article  Google Scholar 

  3. Bhat, C., Bhat, M.R., Murthy, C.R.L.: Characterization of failure modes in CFRP composites: an ANN approach. J. Compos. Mater. 42, 257–276 (2008)

    Article  Google Scholar 

  4. Kostopoulos, V., Loutas, T.H., Kontsos, A., Sotiriadis, G., Pappas, Y.Z.: On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT&E Int. 36, 571–580 (2003)

    Article  Google Scholar 

  5. Ativitavas, N., Pothisiri, T., Fowler, T.J.: Identification of fiber-reinforced plastic failure mechanisms from acoustic emission data using neural networks. J. Compos. Mater. 40, 193–226 (2006)

    Article  Google Scholar 

  6. Mal, A., Banerjee, S., Ricci, F.: An automated damage identification technique based on vibration and wave propagation data. Philos. Trans. R. Soc. A 365, 479–491 (2007)

    Article  Google Scholar 

  7. Marec, A., Thomas, J., Guerjouma, R.E.: Damage characterization of polymer-based composite materials? Multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 22, 1441–1464 (2008)

    Article  Google Scholar 

  8. Oliveira, R.D., Marques, A.T.: Health monitoring of FRP using acoustic emission and artificial neural networks. Comput. Struct. 86, 367–373 (2008)

    Article  Google Scholar 

  9. Pashmforoush, F., Khamedi, R., Fotouhi, M., Hajikhani, M., Ahmadi, M.: Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm. J. Nondestruct. Eval. (2014). doi:10.1007/s10921-014-0243-y

  10. Aggelis, D.G., Barkoula, N., Matikas, T.E., Paipetis, A.S.: Acoustic structural health monitoring of composite materials: Damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72(10), 1127–1133 (2012)

    Article  Google Scholar 

  11. Bellenger, F., Mazille, H., Idrissi, H.: Use of acoustic emission technique for the early detection of aluminum alloys exfoliation corrosion. NDT&E Int. 35, 385–392 (2002)

    Article  Google Scholar 

  12. Yu, J., Ziehl, P.: Stable and unstable fatigue prediction for A572 structural steel using acoustic emission. JCSR 77, 173–179 (2012)

    Google Scholar 

  13. Sause, M.G.R., Horn, S.: Quantification of the uncertainty of pattern recognition approaches applied to acoustic emission signals. J. Nondestruct. Eval. 32, 242–255 (2013)

    Article  Google Scholar 

  14. Aggelis, D.G., Matikas, T.E.: Effect of plate wave dispersion on the acoustic emission parameters in metals. Comput. Struct. 98–99, 17–22 (2012)

    Article  Google Scholar 

  15. Santis, S.D., Tomor, A.K.: Laboratory and field studies on the use of acoustic emission for masonry bridges. NDT&E Int. 55, 64–74 (2013)

    Article  Google Scholar 

  16. Johnson, M., Ozevin, D., Washer, G., Ono, K., Gostautas, R., Tamutus, T.: Real time eyebar crack detection using acoustic emission method. J. Transp. Res. Board 2313, 72–79 (2012)

    Article  Google Scholar 

  17. Leone, F.A., Ozevin, D., Awerbuch, J., Tan, T.M.: Detecting and locating damage initiation and progression in full-scale sandwich composite fuselage panels using acoustic emission. J. Compos. Mater. 47(13), 1643–1664 (2013)

    Article  Google Scholar 

  18. Prosser, W.H., Hamstad, M.A., Gary, J., O’Gallagher, A.: Finite element and plate theory modeling of acoustic emission waveforms. J. Nondestruct. Eval. 18(3), 83–90 (1999)

    Article  Google Scholar 

  19. Hill, R., Forsyth, S.A., Macey, P.: Finite element modelling of ultrasound, with reference to transducers and AE waves. Ultrasonics 42, 253–258 (2004)

    Article  Google Scholar 

  20. Moser, F., Jacobs, L.J., Qu, J.: Modeling elastic wave propagation in waveguides with the finite element method. NDT&E Int. 32, 225–234 (1998)

    Article  Google Scholar 

  21. Ham, S., Bathe, K.: A finite element method enriched for wave propagation problems. Comput. Struct. 94–95, 1–12 (2012)

    Article  Google Scholar 

  22. Sause, M.G.R., Horn, S.: Simulation of acoustic emission in planar carbon fiber reinforced plastic specimens. J. Nondestruct. Eval. 29, 123–142 (2010)

    Article  Google Scholar 

  23. Zak, A., Radzienski, M., Krawczuk, M., Ostachowicz, W.: Damage detection strategies based on propagation of guided elastic waves. Smart Mater. Struct. 12, 035014–035032 (2012)

    Google Scholar 

  24. Bathe, K.J.: Finite Element Procedures. Pearson Education, Prentice Hall (1995)

    Google Scholar 

  25. Mehdizadeh, O.Z., Paraschivoiu, M.: Investigation of a two-dimensional spectral element method for Helmholtz’s equation. J. Comput. Phys. 189, 111–129 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zak, A.: A novel formulation of a spectral plate element for wave propagation in isotropic structures. Finite Elem. Anal. Des. 45, 650–658 (2009)

    Article  Google Scholar 

  27. De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some commom finite-element methods for acoustic and elastic wave equation. Geophysics 72(6), T81–T95 (2007)

    Article  Google Scholar 

  28. Heidary, Z.; Ozevin, D.: The selection of spectral element polynomial orders for high frequency numerical wave propagation. In: SPIE, San Diego, (2013)

  29. Choi, J.D., Inman, D.J.: Spectral Element Method for Cable Harnessed Structures. In: IMAC-XXXI. Society of Experimental Mechanics, Garden Grove (2013)

    Book  Google Scholar 

  30. Lee, U., Park, I.W., Jang, I.J.: Spectral element model for the PZT-bonded laminated composite beams. Appl. Mech. Mater. 249–250, 838–841 (2012)

    Article  Google Scholar 

  31. Kudela, P., Krawczuk, M., Ostachowicz, W.: Wave propagation modeling in 1D structures using spectral element method. J. Sound Vib. 300, 88–100 (2007)

    Article  Google Scholar 

  32. Achenbach, J.D.: Wave Propagation in Elastic Solids. Elsevier Science, North-Holland (1975)

    Google Scholar 

  33. Liu, G.R., Jerry, S.S.Q.: A non-reflecting boundary for analyzing wave propagation using the finite element method. Finite Elem. Anal. Des. 39, 403–417 (2003)

    Article  Google Scholar 

  34. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Skelton, E.A., Adams, S.D.M., Craster, R.V.: Guided elastic waves and perfectly matched layers. Wave Motion 44, 573–592 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Basu, U., Chopra, A.K.: Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementaion. Comput. Methods Appl. Mech. Eng. 192, 1337–1375 (2003)

    Article  MATH  Google Scholar 

  37. Festa, G., Vilotte, J.P.: The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophys. J. Int. 161, 789–812 (2005)

    Article  Google Scholar 

  38. Goldsmith, W.: Impact: The Theory and Physical Behavior of Colliding Solids, Mineola. Dover, New York (2001)

    Google Scholar 

  39. Giurgiutiu, V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press, New York (2008)

    Google Scholar 

  40. McLaskey, G.C., Glaser, S.D.: Acoustic emission sensor calibration for absolute source measurement. J. Nondestruct. Eval. 31, 157–168 (2012)

    Article  Google Scholar 

  41. Sause, M.G.R., Hamstad, M.A., Horn, S.: Finite element modeling of conical acoustic emission sensors and corresponding experiments. Sensors Actuators A Phys. 184, 64–71 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Ozevin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary, Z., Ozevin, D. On the Influences of Boundary Reflections and Piezoelectric Sensors to the Characteristics of Elastic Waves for Pattern Recognition Methods. J Nondestruct Eval 34, 271 (2015). https://doi.org/10.1007/s10921-014-0271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-014-0271-7

Keywords

Navigation