Skip to main content
Log in

Reflection Phase Measurements for Ultrasonic NDE of Titanium Diffusion Bonds

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The adoption of diffusion bonding in fracture critical titanium components has been limited by the complications that macroscopic anisotropy introduces to typical ultrasonic inspections. Previous attempts to overcome these limitations by using signal phase to extract otherwise hidden interface information showed promise but were susceptible to measurement error and proved impractical for typical aerospace component geometries. In the work presented here, significant improvements to the existing phase measurement approach are proposed alongside adaptations that permit its broader practical implementation. The principal parameters that affect the phase analysis of ultrasonic signals were investigated and their optimisation resulted in up to an order of magnitude improvement in phase measurement reliability, even at low signal-to-noise ratios. The application of these optimised parameters without a priori knowledge of the signal arrival time in an otherwise noisy waveform is illustrated, and the sensitivity of the approach to ambient temperature and annealing effects is also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Doorbar, P., Dixon, M., Chatterjee, A.: Aero-engine titanium: from alloys to composites. Mater. Sci. Forum 618, 127–134 (2009)

    Article  Google Scholar 

  2. Pavlov, S.V., Isaev, A.A., Zav’yalova, N.: Ultrasonic inspection in the production of disk blanks made of granulated nickel alloys. Metal Sci. Heat Treat. 33, 934–936 (1991)

    Article  Google Scholar 

  3. Thomas, G.H., Spingarn, J.R.: Ultrasonic evaluation of solid-state welds. J. Nondestruct. Eval. 7, 227–235 (1988)

    Article  Google Scholar 

  4. Panetta, P.D., Margetan, F.J., Yalda, I., Thompson, R.B.: Ultrasonic attenuation measurements in jet-engine titanium alloys. Rev. Prog. Quant. Nondestruct. Eval. 15, 1525–1532 (1996)

    Article  Google Scholar 

  5. Margetan, F.J., Wasan, H., Thompson, R.B.: An experimental study of microstructure-induced ultrasonic signal fluctuations in jet-engine titanium alloys. Rev. Prog. Quant. Nondestruct. Eval. 19, 1433–1440 (2000)

    Article  Google Scholar 

  6. Blodgett, M.P., Eylon, D.: The influence of texture and phase distortion on ultrasonic attenuation in Ti-6Al-4V. J. Nondestruct. Eval. 20, 1–16 (2001)

    Article  Google Scholar 

  7. Derby, B., Briggs, G.A.D., Wallach, E.R.: Non-destructive testing and acoustic microscopy of diffusion bonds. J. Mater. Sci. 18, 2345–2353 (1983)

    Article  Google Scholar 

  8. Weglein, R.D.: Titanium diffusion bond evaluation via acoustic microscopy. Ultrason. Symp. 2, 1045–1048 (1988)

    Google Scholar 

  9. Windels, F., Leroy, O.: Air-coupled ultrasonic testing of diffusion bonds. Ultrasonics 40, 171–176 (2002)

    Article  Google Scholar 

  10. Thomas, G.H., Chinn, D.: Signal analysis approach to ultrasonic evaluation of diffusion bond quality. Nondestruct. Charact. Mater. IX 497, 536–542 (1999)

    Article  Google Scholar 

  11. Lavrentyev, A.I., Beals, J.T.: Ultrasonic measurement of the diffusion bond strength. Ultrasonics 38, 513–516 (2000)

    Article  Google Scholar 

  12. Lin, L., Shi, Y.W., Chen, J., Li, X.M., Guo, G.P.: Ultrasonic testing of the diffusion bonding of titanium alloys. Insight 48, 415–417 (2006)

    Article  Google Scholar 

  13. Milne, K., Cawley, P., Nagy, P.B., Wright, D.C., Dunhill, A.: Ultrasonic non-destructive evaluation of titanium diffusion bonds. J. Nondestruct. Eval. 30, 225–236 (2011)

  14. Baik, J.M., Thompson, R.B.: Ultrasonic scattering from imperfect interfaces: a quasi-static model. J. Nondestruct. Eval. 4, 177–196 (1984)

    Article  Google Scholar 

  15. Margetan, F.J., Thompson, R.B., Gray, T.A.: Interfacial spring model for ultrasonic interactions with imperfect interfaces: theory of oblique incidence and application to diffusion-bonded butt joints. J. Nondestruct. Eval. 7, 131–152 (1988)

    Article  Google Scholar 

  16. Palmer, D.D., Rehbein, D.K., Smith, J.F., Buck, O.: Nondestructive characterization of the mechanical strength of diffusion bonds. I. Experimental results. J. Nondestruct. Eval. 7, 153–166 (1988)

    Article  Google Scholar 

  17. Lavrentyev, A.I., Rokhlin, S.I.: Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids. J. Acoust. Soc. Am. 103, 657–664 (1998)

    Article  Google Scholar 

  18. Brotherhood, C.J., Drinkwater, B.W., Guild, F.J.: The effect of compressive loading on the ultrasonic detectability of kissing bonds in adhesive joints. J. Nondestruct. Eval. 21, 95–104 (2003)

    Article  Google Scholar 

  19. Buck, O., Thompson, R.B., Rehbein, D.K., Palmer, D.D., Brasche, L.J.H.: Contacting surfaces: a problem in fatigue and diffusion bonding. Metall. Trans. A 20, 627–636 (1989)

    Article  Google Scholar 

  20. Nagy, P.B., Adler, L.: Ultrasonic NDE of solid-state bonds: inertia and friction welds. J. Nondestruct. Eval. 7, 199–215 (1988)

    Article  Google Scholar 

  21. Pilant, W.L., Knopoff, L., Schwab, F.: Transmission and reflection of surface waves at a corner. 3. Rayleigh waves (Experimental). J. Geophys. Res. 69, 291–297 (1964)

  22. Instanes, G., Pedersen, A., Toppe, M., Nagy, P.B.: Constant group velocity ultrasonic guided wave inspection for corrosion and erosion monitoring in pipes. Rev. Prog. Quant. Nondestruct. Eval. 28, 1386–1393 (2009)

    Article  Google Scholar 

  23. Escobar-Ruiz, E., Cawley, P., Nagy, P.B., Collison, I.J., Wright, D.C.: Ultrasonic NDE of titanium diffusion bonds using signal phase. Rev. Prog. Quant. Nondestruct. Eval. 32, 1409–1416 (2013)

    Google Scholar 

  24. Desilets, C.S., Fraser, J.D., Kino, G.S.: The design of efficient broadband piezoelectric transducers. IEEE Trans. Sonics Ultrason. 25, 115–125 (1978)

    Article  Google Scholar 

  25. Kossoff, G.: The effects of backing and matching on the performance of piezoelectric ceramic transducers. IEEE Trans. Sonics Ultrason. 13, 20–30 (1966)

    Article  Google Scholar 

  26. Gachagan, A., Harvey, G., O’Leary, R.L., Mackersie, J.: Investigating the influence of the constituent materials on the performance of periodic piezoelectric composite arrays. Rev. Prog. Quant. Nondestruct. Eval. 26, 759–766 (2007)

    Article  Google Scholar 

  27. Oppenheim, A., Schafer, R.: Digital Signal Processing, 1st edn. Prentice Hall, Upper Saddle River (1975)

    MATH  Google Scholar 

  28. Harris, F.J.: On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE 66, 51–83 (1978)

    Article  Google Scholar 

  29. Shiavi, R.: Introduction to Applied Statistical Signal Analysis, 3rd edn. Academic Press, Burlington (2007)

    Google Scholar 

  30. Paliwal, K., Wójcicki, K., Shannon, B.: The importance of phase in speech enhancement. Speech Commun. 53, 465–494 (2011)

    Article  Google Scholar 

  31. Reddy, N.S., Swamy, M.N.S.: Derivative of the phase spectrum of truncated autoregressive signals. IEEE Trans. Circuits Syst. 32, 616–618 (1985)

    Article  Google Scholar 

  32. Instanes, G., Toppe, M., Lakshminarayan, B., Nagy, P.B.: Corrosion and erosion monitoring of pipes by an ultrasonic guided wave method. In: Kundu, T. (ed.) Advanced Ultrasonic Methods for Materials and Structure Inspection, pp. 115–157. ISTE Ltd, London (2007)

  33. Wenbo, H., Kaifeng, Z., Guofeng, W.: Superplastic forming and diffusion bonding for honeycomb structure of Ti-6Al-4V alloy. J. Mater. Process. Technol. 183, 450–454 (2007)

  34. Vázquez, M., Ramos, A., Leija, L., Vera, A.: Noninvasive temperature estimation in oncology hyperthermia using phase changes in pulse-echo ultrasonic signals. Jpn. J. Appl. Phys. 45, 7991–7998 (2006)

    Article  Google Scholar 

  35. British Standards Institution BS EN 583–1:1999: Non-Destructive Testing: Ultrasonic Examination-General Principles. BSI, London (1999)

    Google Scholar 

Download references

Acknowledgments

This work was jointly funded by Rolls-Royce plc, the Engineering and Physical Sciences Research Council and the UK Research Centre in NDE. The authors gratefully acknowledge the contributions of Phill Doorbar and David Rugg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwill Escobar-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Ruiz, E., Wright, D.C., Collison, I.J. et al. Reflection Phase Measurements for Ultrasonic NDE of Titanium Diffusion Bonds. J Nondestruct Eval 33, 535–546 (2014). https://doi.org/10.1007/s10921-014-0250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0250-z

Keywords

Navigation