Skip to main content
Log in

Effect of Localized Microstructure Evolution on Higher Harmonic Generation of Guided Waves

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The use of nonlinear ultrasonics to characterize microstructural evolution is investigated with the aim of enabling earlier remaining useful life prediction and thereby greatly improving condition based maintenance. Higher harmonic generation is sensitive to microstructural features, whose evolution is indicative of ongoing damage processes. Localized plastic deformation is controlled in an aluminum sample by varying the notch length, which dictates the extent of the plastic zone. The essentials of higher harmonic generation analysis for ultrasonic guided waves are highlighted to provide a means to select a primary mode that generates a strong higher harmonic. Experimental methods to use magnetostrictive transducers for third harmonic generation measurements are described. Experimental results on aluminum plates indicate that plastic deformation increases the third harmonic by up to a factor of five and that the harmonic amplitude ratio \(A_{3}\)/\(A_{1}^{3}\) is sensitive to the plastic strain magnitude. These initial results show that when the plastic strain is localized, the \(A_{3}\)/\(A_{1}^{3 }\) ratio appears to be proportional to the plastic zone-to-propagation distance ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  2. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, Hoboken (1996)

    Google Scholar 

  3. Bond, L.J., Doctor, S.R., Griffin, J.W., Hull, A.B., Malik, S.N.: Damage assessment technologies for prognostics and proactive management of materials degradation. Nucl. Technol. 173, 46–55 (2011)

    Google Scholar 

  4. Turner, J.A., Weaver, R.L.: Time dependence of multiply scattered diffuse ultrasound in polycrystalline media. J. Acoust. Soc. Am. 97(5), 2639–2644 (1995)

    Article  Google Scholar 

  5. Panetta, P.D., Thompson, R.B.: Ultrasonic attenuation in duplex titanium alloys. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1717–1724. Plenum Press, New York (1999)

    Chapter  Google Scholar 

  6. Ramuhalli, P., Good, M.S., Harris, R,J., Bond, L.J., Ruud, C,O., Diaz, A.A., Anderson, M,T.: Methods for the in-situ characterization of cast austenitic stainless steel. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1089–1096. American Institute of Physics (2011)

  7. Huang, M., Jiang, L., Liaw, P.K., Brooks, C.R., Seeley, R., Klarstrom, D.L.: Using acoustic emission in fatigue and fracture materials research. JOM-e 50(11), 1–2 (1998)

    Google Scholar 

  8. Sagar, S.P., Parida, N., Das, S., Dobmann, G., Bhattacharya, D.K.: Barkhausen emission to evaluate fatigue damage in a low carbon structural steel. Int. J. Fatigue 27, 317–322 (2005)

    Article  Google Scholar 

  9. Liu, T., Kikuchi, H., Kamada, Y., Ara, K., Kobayashi, S., Takahashi, S.: Comprehensive analysis of Barkhausen noise properties in the cold rolled mild steel. J. Magn. Magn. Mater. 310, 989–991 (2007)

    Google Scholar 

  10. Kasai, N., Koshino, H., Sekine, K., Kihira, H., Takahashi, M.: Study on the effect of elastic stress and microstructure of low carbon steels on Barkhausen noise. J. Nondestruct. Eval. 32, 277–285 (2013)

    Article  Google Scholar 

  11. Raj, B., Moorthy, T., Jayakumar, T.: Assessment of microstructures and mechanical behavior of metallic materials through non-destructive evaluation. Int. Mater. Rev. 48, 273–325 (2003)

    Article  Google Scholar 

  12. Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)

    Article  Google Scholar 

  13. Kim, C.S., Kwun, S.I., Lissenden, C.J.: Influence of precipitates and dislocations on the acoustic nonlinearity in metallic materials. J. Korean Phys. Soc. 55, 528–532 (2009)

    Article  Google Scholar 

  14. Matlack, K.H., Wall, J.J., Kim, J.Y., Qu, J., Jacobs, L.J., Viehrig, H.W.: Evaluation of radiation damage using nonlinear ultrasound”. J. Appl. Phys. 111, 054911 (2012)

    Article  Google Scholar 

  15. Jhang, K.Y.: Nonlinear techniques for nondestructive assessment of micro damage in material: review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)

    Article  Google Scholar 

  16. Zheng, Y., Maev, R.G., Solodov, I.Y.: Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (1999)

    Article  Google Scholar 

  17. Deng, M.: Cumulative second-harmonic generation of generalized Lamb-wave propagation in a solid waveguide. J. Phys. D 33, 207–215 (2000)

    Article  Google Scholar 

  18. de Lima, W.J.N., Hamilton, M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)

    Article  Google Scholar 

  19. Srivastava, A., Lanza di Scalea, F.: On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib. 323, 932–943 (2009)

    Article  Google Scholar 

  20. Müller, M.F., Kim, J.Y., Qu, J., Jacobs, L.J.: Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127(4), 2141–2152 (2010)

    Article  Google Scholar 

  21. Chillara, V.K., Lissenden, C.J.: Interaction of guided wave modes in isotropic nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111(12), 124909 (2012)

    Article  Google Scholar 

  22. Liu, Y., Chillara, V.K., Lissenden, C.J.: On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib. 332(19), 4517–4528 (2013)

    Article  Google Scholar 

  23. Liu, Y., Khajeh, E., Lissenden, C.J., Rose, J.L.: Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders. J. Acoust. Soc. Am. 133(5), 2541–2553 (2013)

    Article  Google Scholar 

  24. Liu, Y., Lissenden, C.J., Rose, J.L.: Cumulative second harmonics in weakly nonlinear plates and shells. In: Kundu, T. (ed) Health Monitoring of Structural and Biological Systems, Proceedings of SPIE, Vol. 8695, paper 869528 (2013).

  25. Liu, Y., Chillara, V.K., Lissenden, C.J., Rose, J.L.: Cubic nonlinear shear horizontal and Rayleigh Lamb waves in weakly nonlinear plates. J. Appl. Phys. 114, 114908 (2013)

    Article  Google Scholar 

  26. Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. Phys. Rev. 144(2), 469–477 (1966)

    Article  Google Scholar 

  27. Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. Phys. Rev. 151(2), 442–449 (1966)

    Article  Google Scholar 

  28. Borigo, C., Rose, J.L., Yan, F.: A spacing compensation factor for the optimization of guided wave annular array transducers. J. Acoust. Soc. Am. 133(1), 127–135 (2013)

    Google Scholar 

  29. Rose, J.L.: Ultrasonic waves in solid media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  30. Pruell, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 91, 231911 (2007)

    Article  Google Scholar 

  31. Pruell, C., Kim, J.Y., Qu, J., Jacobs, L.J.: A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate. NDT&E Int. 42, 199–203 (2009)

    Article  Google Scholar 

  32. Choi, G., Liu, Y., Lissenden, C.J., Rose, J.L.: Influence of localized microstructure evolution on second harmonic generation of guided waves. In: Thompson, D.O., Chimenti, D.E. (ed) Review of Progress in Quantitative Nondestructive Evaluation (2014, in-press)

Download references

Acknowledgments

The authors want to thank Clayton Dickerson for conducting the mechanical loading experiments. This material is based upon work supported by the Nuclear Energy Universities Program under Award Number 00102946 and the National Science Foundation under Grant Number 1300562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Lissenden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lissenden, C.J., Liu, Y., Choi, G.W. et al. Effect of Localized Microstructure Evolution on Higher Harmonic Generation of Guided Waves. J Nondestruct Eval 33, 178–186 (2014). https://doi.org/10.1007/s10921-014-0226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0226-z

Keywords

Navigation