Skip to main content

Advertisement

Log in

A New Approach on HCI Extracting Conscious Jaw Movements Based on EEG Signals Using Machine Learnings

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Machine computer interfaces (MCI) are assistive technologies enabling paralyzed peoples to control and communicate their environments. This study aims to discover and represents a new approach on MCI using left/right motions of voluntary jaw movements stored in electroencephalogram (EEG). It extracts brain electrical activities on EEG produced by voluntary jaw movements and converts these activities to machine control commands. Jaw-operated machine computer interface is a new way of MCI entitled as jaw machine interface (JMI) provides new functionality for paralyzed people to assist available environmental devices using their jaw motions. In this article, root mean square (RMS) and standard deviation (STD) features of signals are extracted and hemispherical pattern changes are computed and compared as offline analysis approach. A statistical algorithm, principle component analysis (PCA), is used to reduce high dimensional data and two types of machine learning algorithms which are linear discriminant analysis (LDA) and support vector machine (SVM) incorporating k-fold cross validation technique are employed to identify pattern changes by utilizing the features of horizontal jaw movements stored in EEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wei, L., Hu, H. and Yuan, K., Use of forehead bio-signals for controlling an intelligent wheelchair. IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, 108–113, doi:https://doi.org/10.1109/ROBIO.2009.4912988. 2008.

  2. Wei, L., Hu, H., Lu, T. and Yuan, K., Evaluating the performance of a face movement based wheelchair control interface in an indoor environment. IEEE International Conf. on Robotics and Biomimetics, Tianjin, China, pp. 387–392. doi:https://doi.org/10.1109/ROBIO.2010.5723358.2010.

  3. Wei, L., and Hu, H., A hybrid brain-machine interface for hands-free control of an intelligent wheelchair. Int. J. Mechatron. Auto. 1(2):97–111, 2011. https://doi.org/10.1504/IJMA.2011.040040.

    Article  Google Scholar 

  4. Rechy-Ramirez, E. & Hu, J. H., Bi-modal brain machine interface for controlling an intelligent wheelchair. IEEE Fourth International Conference on Emerging Security Technologies, Cambridge, UK, pp. 66–70, 2013. doi:https://doi.org/10.1109/EST.2013.19

    Book  Google Scholar 

  5. Jeong, J. W., Yeo, W. H., Akhtar, A., Norton, J. J., Kwack, Y. J. et al., Materials and optimized designs for brain-machine interfaces via epidermal electronics. Adv. Mater. 25(47):6839–6846, 2013. https://doi.org/10.1002/adma.201301921.

    Article  PubMed  CAS  Google Scholar 

  6. Paul, G. M., Cao, F., Torah, R., Yang, K., Beeby, S., and Tudor, J., A smart textile based facial EMG and EOG computer interface. IEEE Sens. J. 14(2):393–400, 2014. https://doi.org/10.1109/JSEN.2013.2283424.

    Article  Google Scholar 

  7. Costa, A., Hortal, E., Ianez, E., and Azorin, J. M., A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm. PLoS ONE 10(2):e112352, 2015. https://doi.org/10.1371/journal.pone.0112352.

    Article  CAS  Google Scholar 

  8. Klem, G. H., Lüders, H. O., Jasper, H. H., and Elger, C., The ten-twenty electrode system of the international federation. Electroencephalogra. Clin. Neurophysiol. 52(3):3–6, 1999. https://doi.org/10.1080/00029238.1961.11080571.

    Article  CAS  Google Scholar 

  9. Linden, M., Habib, T., and Radojevic, V., A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. Biofeed. Self-reg. 21(1):35–49, 1996. https://doi.org/10.1007/BF02214148.

    Article  CAS  Google Scholar 

  10. Azami, H., Sanei, S., and Mohammadi, K., A novel signal segmentation method based on standard deviation and variable threshold. J. Comput. Appl. 34(2):27–34, 2011. https://doi.org/10.5120/4073-5860.

    Article  Google Scholar 

  11. Pearson, K., On lines and planes of closest fit to systems of points in space. Phil. Mag. 2(6):559–572, 1901. https://doi.org/10.1080/14786440109462720.

    Article  Google Scholar 

  12. Cao, L. J., Chua, K. S., Chong, W. K., Lee, H. P., and Gu, O. M., A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1):321–336, 2003. https://doi.org/10.1016/S0925-2312(03)00433-8.

    Article  Google Scholar 

  13. Semmlow, J. L., Biosignal and biomedical image processing MATLAB-based applications. In Dekker M. (Ed.), chapter 9, New York, 2004. https://searchworks.stanford.edu/view/8816570.

  14. Şen, B., and Peker, M., Novel approaches for automated epileptic diagnosis using fcbf selection and classification algorithms. Turk. J. Elec. Eng. & Comp. Sci. 21(1):2092–2109, 2013. https://doi.org/10.3906/elk-1203-9.

    Article  Google Scholar 

  15. Bascil, M. S., and Teurtas, F., A study on hepatitis disease diagnosis using multilayer neural network with Levenberg Marquardt training algorithm. J. Med. Syst. 35(3):433–436, 2011. https://doi.org/10.1007/s10916-009-9378-2.

    Article  PubMed  Google Scholar 

  16. Bascil, M. S., and Oztekin, H., A study on hepatitis disease diagnosis using probabilistic neural network. J. Med. systems 36(3):1603–1606, 2012. https://doi.org/10.1007/s10916-010-9621-x.

    Article  Google Scholar 

  17. Fisher, R. A., The use of multiple measurements in taxonomic problems. Ann. Eugenics. 7(2):179–188, 1936. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.

    Article  Google Scholar 

  18. Balakrishnama, S., and Ganapathiraju, A., Linear discriminant analysis-a brief tutorial. Instit. Sign. Inform. Process. 18:1–8, 1998. https://www.researchgate.net/publication/240093048_Linear_Discriminant_Analysis-A_Brief_Tutorial.

    Google Scholar 

  19. Cortes, C., and Vapnik, V., Support-vector networks. Mach. Learn. 20(3):273–297, 1995. https://doi.org/10.1023/A:1022627411411.

    Article  Google Scholar 

  20. Bascil, M. S., Tesneli, A. Y., and Temurtas, F., Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for MCI using SVM and ANN. Austral. Phys. Eng. Sci. Med. 39(3):665–676, 2016. https://doi.org/10.1007/s13246-016-0462-x.

    Article  Google Scholar 

  21. Vapnik, V. N., An overview of statistical learning theory. IEEE Trans Neural Netw. 10(5):988–999, 1999. https://doi.org/10.1109/72.788640.

    Article  PubMed  CAS  Google Scholar 

  22. Alpaydın, E., Introduction to machine learning (adaptive computation and machine learning). Cambridge, Massachusetts, 2004. https://dl.acm.org/citation.cfm?id=1036287.

  23. Guler, I., and Ubeyli, E. D., Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inform. Technol. Biomed. 11(2):117–126, 2007. https://doi.org/10.1109/TITB.2006.879600.

    Article  Google Scholar 

  24. Pérez, A., Carreiras, M., and Duñabeitia, J. A., Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening. Sci. Rep. 7(1):4190, 2017. https://doi.org/10.1038/s41598-017-04464-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Estepp, J. R., Christensen, J. C., Monnin, J. W., Davis, I. M., and Wilson, G. F., Validation of a dry electrode system for EEG. Proc. Brain Fact. Ergonom. Soc. Ann. Meet. 53(18):1171–1175, 2009. https://doi.org/10.1177/154193120905301802.

    Article  Google Scholar 

  26. Kappel, S. L., Looney, D., Mandic, D. P., and Kidmose, P., Physiological artifacts in scalp EEG and ear-EEG. Biomed. Eng. Online 16(1):103, 2017. https://doi.org/10.1186/s12938-017-0391-2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yong, X., Ward, R. K. and Birch, G. E., Facial EMG contamination of EEG signals: Characteristics and effects of spatial filtering. IEEE 3rd International Symposium on Communications, Control and Signal Processing, St Julians, Malta, pp. 729–734, 2008. https://doi.org/10.1109/ISCCSP.2008.4537319.

  28. Xiao, D. and Hu, J., Identification of motor imagery EEG signal. International Conference on Biomedical Engineering and Computer Science (ICBECS), Wuhan, China, pp. 1–4, 2010. https://doi.org/10.1109/ICBECS.2010.5462405.

  29. Huo, X., Park, H., Kim, J., and Ghovanloo, M., A dual-mode machine computer interface combining Speec and tongue motion for people with severe disabilities. IEEE Trans. Neural Syst. Reha. Eng. 21(6):979–991, 2013. https://doi.org/10.1109/TNSRE.2013.2248748.

    Article  Google Scholar 

  30. Nam, Y., Koo, B., Cichocki, A., and Choi, S., GOM-face: GKP, EOG, and EMG-based multimodal Interface with application to Brainoid robot control. IEEE Trans. Biomed. Eng. 61(2):453–462, 2014. https://doi.org/10.1109/TBME.2013.2280900.

    Article  PubMed  Google Scholar 

  31. Nam, Y., Koo, B., Cichocki, A., and Choi, S., Glossokinetic potentials for a tongue–machine Interface. IEEE Syst. Man, Cybernet. Mag. 2(1):6–13, 2016. https://doi.org/10.1109/MSMC.2015.2490674.

    Article  Google Scholar 

  32. Gorur, K., Bozkurt, M. R., Bascil, M. S., and Temurtas, F., Glossokinetic potential based tongue-machine interface for 1-D extraction. Austral. Phys. Eng. Sci. Med. 41(2):379–391, 2018. https://doi.org/10.1007/s13246-018-0635-x.

    Article  Google Scholar 

  33. Gorur, K., Bozkurt, M. R., Bascil, M. S., and Temurtas, F., Glossokinetic potential based tongue-machine interface for 1-D extraction using neural networks. Biocybernetics and Biomedical Eng. 38(3):745–759, 2018. https://doi.org/10.1016/j.bbe.2018.06.004.

Download references

Acknowledgements

The author would like to thank the subjects of the University of Bozok for providing the.

participation for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Serdar Bascil.

Ethics declarations

Ethical Approval

The study was approved by the Ethical Committee of Bozok University. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bascil, M.S. A New Approach on HCI Extracting Conscious Jaw Movements Based on EEG Signals Using Machine Learnings. J Med Syst 42, 169 (2018). https://doi.org/10.1007/s10916-018-1027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1027-1

Keywords

Navigation