Skip to main content

Advertisement

Log in

Differentiation of Two Subtypes of Adult Hydrocephalus by Mixture of Experts

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper illustrates the use of mixture of experts (ME) network structure to guide model selection for diagnosis of two subtypes of adult hydrocephalus (normal-pressure hydrocephalus–NPH and aqueductal stenosis–AS). The ME is a modular neural network architecture for supervised learning. Expectation-Maximization (EM) algorithm was used for training the ME so that the learning process is decoupled in a manner that fits well with the modular structure. To improve classification accuracy, the outputs of expert networks were combined by a gating network simultaneously trained in order to stochastically select the expert that is performing the best at solving the problem. The classifiers were trained on the defining features of NPH and AS (velocity and flux). Three types of records (normal, NPH and AS) were classified with the accuracy of 95.83% by the ME network structure. The ME network structure achieved accuracy rates which were higher than that of the stand-alone neural network models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kestle, J. R. W., In Batjer, H. H., & Loftus, C. M. (Eds.), Textbook of Neurological Surgery. Philadelphia: Lippincott Williams Wilkins, 871–875, 2003.

  2. Klinge, P. M., In Ramina, R., Aguiar, P. H. P., & Tatagiba, M. (Eds.), Samii’s Essentials in Neurosurgery. Berlin: Springer-Verlag, 249–258, 2008.

  3. Fukuhara, T., and Luciano, M. G., Clinical features of late-onset idiopathic aqueductal stenosis. Surgical neurology. 55:132–137, 2001. doi:10.1016/S0090-3019(01)00359-7.

    Article  Google Scholar 

  4. Little, J. R., Houser, O. W., and MacCarty, C. S., Clinical manifestation of aqueductal stenosis in adults. Journal of neurosurgery. 43:546–552, 1975.

    Article  Google Scholar 

  5. Tissel, M., Tullberg, M., Hellstrom, P. et al., Neurological symptoms and signs in adult aqueductal stenosis. Acta neurologica Scandinavica. 107:311–317, 2003. doi:10.1034/j.1600-0404.2003.00124.x.

    Article  Google Scholar 

  6. Thompson, D., In: Moore, A. J., & Newel, D. W., (Eds.), Neurosurgery. London: Springer-Verlag, 425–442, 2005.

  7. Anik, Y., Demirci, A., Anik, I. et al., Apparent diffusion coefficient and cerebrospinal fluid flow measurements in patients with hydrocephalus. Journal of computer assisted tomography. 32:392–396, 2008. doi:10.1097/RCT.0b013e31812f4edc.

    Article  Google Scholar 

  8. Kim, D., Choi, J. U., Huh, R. et al., Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Childs Nerv Syst. 15:461–467, 1999. doi:10.1007/s003810050440.

    Article  Google Scholar 

  9. Stoquart-El Sankari, S., Lehmann, P., Gondry-Jouet, C. et al., Phase-Contrast MR imaging support for the diagnosis of aqueductal stenosis. AJNR American journal of neuroradiology. Oct.2, 2008 [Epub ahead of print].

  10. Nitz, W. R., Bradley, W. G. Jr., Watanabe, A. S. et al., Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 183:395–405, 1992.

    Google Scholar 

  11. Enzmann, D. R., Pelc, N. J., 14:1301–1307, 1993; discussion 1309–1310.

  12. Bradley, W. G. Jr., Whittemore, A. R., Kortman, K. E. et al., Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology. 178:459–466, 1991.

    Google Scholar 

  13. Takayuki, S., Osamu, Y., Keizo, T. et al., Analysis of cerebrospinal fluid flow in the aqueduct using cine phase-contrast imaging Fourier analysis and anew technique to correct maxwell term phase errors. Prog Computed Imaging. 23:33–41, 2001.

    Google Scholar 

  14. de Marco, G., Idy-Peretti, I., Didon-Poncelet, A. et al., Intracranial fluid dynamics in normal and hydrocephalic states: systems analysis with phase-contrast magnetic resonance imaging. Journal of computer assisted tomography. 28:247–254, 2004. doi:10.1097/00004728-200403000-00015.

    Article  Google Scholar 

  15. Schroeder, H. W., Schweim, C., Schweim, K. H. et al., Analysis of aqueductal cerebrospinal fluid flow after endoscopic aqueductoplasty by using cine phase-contrast magnetic resonance imaging. Journal of neurosurgery. 93:237–244, 2000.

    Article  Google Scholar 

  16. Barkhof, F., Kouwenhoven, M., Scheltens, P. et al., Phase-contrast cine MR imaging of normal aqueductal CSF flow. Effect of aging and relation to CSF void on modulus MR. Acta radiologica. 35:123–130, 1994.

    Google Scholar 

  17. Parkkola, R. K., Komu, M. E., Aärimaa, T. M. et al., Cerebrospinal fluid in children with normal and dilated ventricles studied by MR imaging. Acta radiologica. 42:33–38, 2001. doi:10.1080/028418501127346431.

    Article  Google Scholar 

  18. Gideon, P., Ståhlberg, F., Thomsen, C. et al., Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 36:210–215, 1994. doi:10.1007/BF00588133.

    Article  Google Scholar 

  19. Gideon, P., Sørensen, P. S., Thomsen, C. et al., Assessment of CSF dynamics and venous flow in the superior sagittal sinus by MRI in idiopathic intracranial hypertension: a preliminary study. Neuroradiolgy. 36:350–354, 1994. doi:10.1007/BF00612116.

    Article  Google Scholar 

  20. Parkkola, R. K., Komu, M. E. S., Kotilainen, E. M. et al., Cerebrospinal fluid flow in patients with dilated ventricles studied with MR imaging. European radiology. 10:1442–1446, 2000. doi:10.1007/s003300000376.

    Article  Google Scholar 

  21. Sharma, A. K., Gaikwad, S., Gupta, V. et al., Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: utility in the management of idiopathic normal pressure hydrocephalus. Clinical neurology and neurosurgery. 110:363–368, 2008. doi:10.1016/j.clineuro.2007.12.021.

    Article  Google Scholar 

  22. Egeler-Peerdeman, S. M., Barkhof, F., Walchenbach, R. et al., Cine phase-contrast MR imaging in normal pressure hydrocephalus patients: relation to surgical outcome. Acta neurochirurgica Supplementum (Wien). 71:340–342, 1998.

    Google Scholar 

  23. Luetmer, P. H., Huston, J., Friedman, J. A. et al., Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 50:534–543, 2002. doi:10.1097/00006123-200203000-00020.

    Article  Google Scholar 

  24. Gideon, P., Thomsen, C., Ståhlberg, F. et al., Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study. Acta neurologica Scandinavica. 89:362–366, 1994.

    Article  Google Scholar 

  25. Mase, M., Yamada, K., Banno, T. et al., Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus. Acta neurochirurgica. Supplementum (Wien). 71:350–353, 1998.

    Google Scholar 

  26. Lee, J. H., Lee, H. K., Kim, J. K. et al., CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging. Korean Journal of Radiology. 5:81–86, 2004.

    Article  Google Scholar 

  27. Übeyli, E. D., Comparison of different classification algorithms in clinical decision-making. Expert systems. 24:117–31, 2007. doi:10.1111/j.1468-0394.2007.00418.x.

    Article  Google Scholar 

  28. Übeyli, E. D., Wavelet/mixture of experts network structure for EEG signals classification. Expert systems with applications. 34:31954–1962, 2008. doi:10.1016/j.eswa.2007.02.006.

    Article  Google Scholar 

  29. Übeyli, E. D., Combining neural network models for automated diagnostic systems. Journal of medical systems. 30:6483–488, 2006. doi:10.1007/s10916-006-9034-z.

    Article  Google Scholar 

  30. Übeyli, E. D., A mixture of experts network structure for breast cancer diagnosis. Journal of medical systems. 29:5569–579, 2005. doi:10.1007/s10916-005-6112-6.

    Article  Google Scholar 

  31. Übeyli, E. D., Implementing wavelet transform/mixture of experts network for analysis of electrocardiogram beats. Expert Systems. 25:2150–162, 2008. doi:10.1111/j.1468-0394.2008.00444.x.

    Article  Google Scholar 

  32. Übeyli, E. D., Modified mixture of experts for diabetes diagnosis. Journal of medical systems, 2008 (in press).

  33. Übeyli, E.D., Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. Journal of medical systems, 2008 (in press).

  34. Übeyli, E. D., & Doğdu, E., Automatic detection of erythemato-squamous diseases using k-means clustering. Journal of medical systems, 2008 (in press).

  35. Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E., Adaptive mixtures of local experts. Neural computation. 3:179–87, 1991. doi:10.1162/neco.1991.3.1.79.

    Article  Google Scholar 

  36. Chen, K., Xu, L., and Chi, H., Improved learning algorithms for mixture of experts in multiclass classification. Neural networks. 12:91229–1252, 1999. doi:10.1016/S0893-6080(99)00043-X.

    Article  Google Scholar 

  37. Hong, X., and Harris, C. J., A mixture of experts network structure construction algorithm for modelling and control. Applied intelligence. 16:159–69, 2002. doi:10.1023/A:1012869427428.

    Article  MATH  Google Scholar 

  38. Jordan, M. I., and Jacobs, R. A., Hierarchical mixture of experts and the EM algorithm. Neural computation. 6:2181–214, 1994. doi:10.1162/neco.1994.6.2.181.

    Article  Google Scholar 

  39. Mangiameli, P., and West, D., An improved neural classification network for the two-group problem. Computers & operations research. 26:5443–460, 1999. doi:10.1016/S0305-0548(98)00076-8.

    Article  MATH  Google Scholar 

  40. Hu, Y. H., Palreddy, S., and Tompkins, W. J., A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE transactions on biomedical engineering. 44:9891–900, 1997. doi:10.1109/10.623058.

    Article  Google Scholar 

  41. Haykin, S., Neural networks: A Comprehensive Foundation. Macmillan, New York, 1994.

    MATH  Google Scholar 

  42. Chaudhuri, B. B., and Bhattacharya, U., Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 34:11–27, 2000. doi:10.1016/S0925-2312(00)00305-2.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Derya Übeyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Übeyli, E.D., Ilbay, K., Ilbay, G. et al. Differentiation of Two Subtypes of Adult Hydrocephalus by Mixture of Experts. J Med Syst 34, 281–290 (2010). https://doi.org/10.1007/s10916-008-9239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9239-4

Keywords

Navigation