Skip to main content
Log in

An Oscillation-Free Spectral Volume Method for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an oscillation-free spectral volume (OFSV) method is proposed and studied for the hyperbolic conservation laws. The numerical scheme is designed by introducing a damping term in the standard spectral volume method for the purpose of controlling spurious oscillations near discontinuities. Based on the construction of control volumes (CVs), two classes of OFSV schemes are presented. A mathematical proof is provided to show that the proposed OFSV is stable and has optimal convergence rate and some desired superconvergence properties when applied to the linear scalar equations. Both analysis and numerical experiments indicate that the damping term would not destroy the order of accuracy of the original SV scheme and can control the oscillations near discontinuities effectively. Numerical experiments are presented to demonstrate the accuracy and robustness of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Borges, R., Carmona, M., Costaand, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bohm, M.: An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Ph.D. thesis, Universität zu Köln (2018)

  3. Cao, W.X., Zou, Q.S.: Analysis of spectral volume methods for 1D linear scalar hyperbolic equations. J. Sci. Comput. 90, 1–29 (2022)

    Article  MathSciNet  Google Scholar 

  4. Choi, B.J., Iskandarani, M., Levin, J., Haidvogel, D.B.: A spectral finite-volume method for the shallow water equations. Mon. Weather Rev. 132, 1777–1791 (2004)

    Article  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  Google Scholar 

  9. Du, J., Liu, Y., Yang, Y.: An oscillation-free bound-preserving discontinuous Galerkin method for multi-component chemically reacting flows. J. Sci. Comput. 95, 1–28 (2023)

    Article  MathSciNet  Google Scholar 

  10. Godunov, S.K.: A difference scheme for numerical computation of discontinuous solution of hyperbolic equation. Math. Sbornik. 47, 271–306 (1959)

    Google Scholar 

  11. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  12. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  Google Scholar 

  13. Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126, 103–151 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  Google Scholar 

  15. Huynh, H.T., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids. Comput. Fluids. 98, 209–220 (2014)

    Article  MathSciNet  Google Scholar 

  16. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  17. Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    Article  MathSciNet  Google Scholar 

  18. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  19. Liu, Y., Lu, J.F., Shu, C.-W.: An essentially oscillation-free discontinuous Galerkin method for hyperbolic systems. SIAM J. Sci. Comput. 44, 230–259 (2022)

    Article  MathSciNet  Google Scholar 

  20. Liu, Y., Lu, J.F., Tao, Q., Xia, Y.: An oscillation-free discontinuous Galerkin method for shallow water equations. J. Sci. Comput. 92, 1–24 (2022)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780–801 (2006)

    Article  MathSciNet  Google Scholar 

  22. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems. J. Comput. Phys. 212, 454–472 (2006)

    Article  MathSciNet  Google Scholar 

  23. Lu, J.F., Liu, Y., Shu, C.-W.: An oscillation-free discontinuous Galerkin method for scalar hyperbolic conservation laws. SIAM J. Numer. Anal. 59, 1299–1324 (2021)

    Article  MathSciNet  Google Scholar 

  24. Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)

    Article  MathSciNet  Google Scholar 

  25. Qiu, J.X., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    Article  MathSciNet  Google Scholar 

  26. Qiu, J.X., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: two dimensional case. Comput. Fluids 34, 642–663 (2005)

    Article  MathSciNet  Google Scholar 

  27. Qiu, J.X., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MathSciNet  Google Scholar 

  28. Reed, W.H., Hill, T.R.: Triangular mesh methods for the Neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos (1973)

  29. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  30. Sun, Y.Z., Wang, Z.J.: Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws unstructured grids. Int. J. Numer. Meth. Fluids 45, 819–838 (2004)

    Article  MathSciNet  Google Scholar 

  31. Sun, Y.Z., Wang, Z.J.: High-order spectral volume method for the Navier–Stokes equations on unstructured grids. In: 34th AIAA Fluid Dynamics Conference and Exhibit (2004)

  32. Sun, Y.Z., Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids VI: extension to viscous flow. J. Comput. Phys. 215, 41–58 (2006)

    Article  MathSciNet  Google Scholar 

  33. Sun, Y.Z., Wang, Z.J., Liu, Y.: High-order multidomain spectral difference method for the Navier–Stokes equations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit (2006)

  34. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2004)

    Article  MathSciNet  Google Scholar 

  35. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997)

    Book  Google Scholar 

  36. Van Leer, B.: Toward the ultimate conservative difference scheme. V. A second order sequel to Godunov method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  37. Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids III: one dimensional systems and partition optimization. J. Sci. Comput. 20, 137–157 (2004)

    Article  MathSciNet  Google Scholar 

  38. Wintermeyer, N., Winters, A.R., Gassner, G.J., Warburton, T.: An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs. J. Comput. Phys. 375, 447–480 (2018)

    Article  MathSciNet  Google Scholar 

  39. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  40. Zhang, M., Shu, C.-W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids. 34, 581–592 (2005)

    Article  Google Scholar 

  41. Zhu, J., Qiu, J.: Runge–Kutta discontinuous Galerkin method using WENO-type limiters: three-dimensional unstructured meshes. Commun. Comput. Phys. 11, 985–1005 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China under Grants Nos. 12271049, 11701038, and Beijing Natural Science Foundation No. 1232012

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waixiang Cao.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to the editors DATE.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Pan, L. & Cao, W. An Oscillation-Free Spectral Volume Method for Hyperbolic Conservation Laws. J Sci Comput 99, 8 (2024). https://doi.org/10.1007/s10915-024-02470-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02470-z

Keywords

Mathematics Subject Classification

Navigation