Skip to main content
Log in

Numerical Methods for Fourth-Order PDEs on Overlapping Grids with Application to Kirchhoff–Love Plates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We describe novel numerical methods for solving a class of high-order time-dependent PDEs on general geometries, which involve second-order derivatives in time and up-to fourth-order derivatives in space. This type of PDEs are widely used in applications such as the Boussinesq equation and in modeling thin-walled elastic structures such as beams, plates and shells, etc. High-order spatial derivatives together with general geometries bring a number of challenges for many numerical methods. In this paper, we resolve these challenges by discretizing the spatial derivatives in domains with general geometries using the composite overlapping grid method. The discretization on overlapping grids requires numerical interpolations to couple solutions on different component grids. However, the presence of interpolation equations breaks the symmetry of the overall spatial discretization, causing numerical instability in time-stepping schemes. To address this, a fourth-order hyper-dissipation term is included for stabilization. Investigation of incorporating the hyper-dissipation term into several time-stepping schemes for solving the semi-discrete system leads to the development of a series of algorithms. Accurate and stable numerical boundary conditions for Dirichlet and Neumann type boundaries are also developed for general geometries. Quadratic eigenvalue problems for a simplified model problem on 1D overlapping grids are considered to reveal the weak instability caused by interpolation between component grids. This model problem is also investigated for the stabilization effects of the proposed algorithms. Carefully designed numerical experiments and two benchmark problems concerning the Kirchhoff–Love plate model are presented to demonstrate the accuracy and efficiency of our approaches. This work shows that finite difference methods on overlapping grids are well-suited for solving high-order PDEs in complex domains for realistic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Notes

  1. Overture is freely available from http://www.overtureframework.org.

References

  1. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10(3), 277–298 (1984)

    MathSciNet  Google Scholar 

  2. Acheson, D.J.: Elementary Fluid Dynamics. Oxford Applied Mathematics and Computing Science Series, 1st edn. Clarendon Press, Oxford (1990)

    Google Scholar 

  3. Li, L., Braun, R.J., Maki, K.L., Henshaw, W.D., King-Smith, P.E.: Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain. Phys. Fluids 26(5), 052101 (2014)

    Google Scholar 

  4. Li, L., Braun, R.J., Henshaw, W.D., King-Smith, P.E.: Computed flow and fluorescence over the ocular surface. Math. Med. Biol. 35(Supplement–1), i51–i85 (2017)

    MathSciNet  Google Scholar 

  5. Ji, H., Falcon, C., Sadeghpour, A., Zeng, Z., Ju, Y.S., Bertozzi, A.L.: Dynamics of thin liquid films on vertical cylindrical fibres. J. Fluid Mech. 865, 303–327 (2019)

    MathSciNet  Google Scholar 

  6. Xu, R., Wang, S., Yang, Y., Ding, Y.: Initial boundary value problem for a class of fourth-order wave equation with viscous damping term. Appl. Anal. Int. J. 92, 1403–1416 (2013)

    MathSciNet  Google Scholar 

  7. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Google Scholar 

  8. Ehrlich, L.W.: Solving the biharmonic equation as coupled finite difference equations. SIAM J. Numer. Anal. 8(2), 278–287 (1971)

    MathSciNet  Google Scholar 

  9. Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible stokes flow. Adv. Comput. Math. 29, 113–133 (2008)

    MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Google Scholar 

  11. Nguyen, D. T., Li, L., Ji, H.: Stable and accurate numerical methods for generalized Kirchhoff–Love plates. J. Eng. Math. 130, 1–26 (2021).

  12. Ji, H., Li, L.: Numerical methods for thermally stressed shallow shell equations. J. Comput. Appl. Math. 362, 626–652 (2019)

    MathSciNet  Google Scholar 

  13. Coleman, B.D., Falk, R.S., Moakher, M.: Space-time finite element methods for surface diffusion with applications to the theory of the stability of cylinders. SIAM J. Sci. Comput. 17(6), 1434–1448 (1996)

    MathSciNet  Google Scholar 

  14. Barrett, J., Blowey, J., Garcke, H.: Finite element approximation of a fourth order degenerate parabolic equation. Numer. Math. 4, 525–556 (1998)

    MathSciNet  Google Scholar 

  15. Grün, G., Rumpf, M.: Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87, 113–152 (2000)

    MathSciNet  Google Scholar 

  16. Witelski, T., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Appl. Numer. Math. 45(2), 331–351 (2003)

    MathSciNet  Google Scholar 

  17. Greer, J.B., Bertozzi, A.L., Sapiro, G.: Fourth order partial differential equations on general geometries. J. Comput. Phys. 216(1), 216–246 (2006)

    MathSciNet  Google Scholar 

  18. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)

    Google Scholar 

  19. Tang, Q., Chacón, L., Kolev, T.V., Shadid, J.N., Tang, X.-Z.: An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD. J. Comput. Phys. 454, 110967 (2022)

    MathSciNet  Google Scholar 

  20. Love, A.E.H.: The small free vibrations and deformation of a thin elastic shell. Philos. T. R. Soc. A 179, 491–546 (1888)

    Google Scholar 

  21. Bécache, E., Derveaux, G., Joly, P.: An efficient numerical method for the resolution of the Kirchhoff–Love dynamic plate equation. Numer. Methods Partial Differ. Equ. 21(2), 323–348 (2005)

    MathSciNet  Google Scholar 

  22. Jacangelo, J., Banks, J.W., Hagstrom, T.: Galerkin differences for high-order partial differential equations. SIAM J. Sci. Comput. 42(2), B447–B471 (2020)

    MathSciNet  Google Scholar 

  23. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, New York (2005)

    Google Scholar 

  24. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19, 149–169 (1968)

    Google Scholar 

  25. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996)

    MathSciNet  Google Scholar 

  26. Brenner, S.C., yeng Sung, L.: Balancing domain decomposition for nonconforming plate elements. Numer. Math. 83, 25–52 (1999)

    MathSciNet  Google Scholar 

  27. Ming, W., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)

    MathSciNet  Google Scholar 

  28. Li, M., Guan, X., Mao, S.: New error estimates of the Morley element for the plate bending problems. J. Comput. Appl. Math. 263, 405–416 (2014)

    MathSciNet  Google Scholar 

  29. Noels, L., Radovitzky, R.: A new discontinuous Galerkin method for Kirchhoff–Love shells. Comput. Methods Appl. Mech. Eng. 197(33–40), 2901–2929 (2008)

    MathSciNet  Google Scholar 

  30. Banks, J.W., Buckner, B.B., Hagstrom, T., Juhnke, K.: Discontinuous Galerkin Galerkin differences for the wave equation in second-order form. SIAM J. Sci. Comput. 43(2), A1497–A1526 (2021)

    MathSciNet  Google Scholar 

  31. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Method. Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    MathSciNet  Google Scholar 

  32. Bazilevs, Y., da Veiga, L.B., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(07), 1031–1090 (2006)

    MathSciNet  Google Scholar 

  33. Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49), 3902–3914 (2009)

    MathSciNet  Google Scholar 

  34. Kiendl, J., Bazilevs, Y., Hsu, M.-C., Wüchner, R., Bletzinger, K.-U.: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199(37–40), 2403–2416 (2010)

    MathSciNet  Google Scholar 

  35. Kiendl, J., Hsu, M.-C., Wu, M.C., Reali, A.: Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput. Method. Appl. Mech. Eng. 291, 280–303 (2015)

    MathSciNet  Google Scholar 

  36. Nguyen-Thanh, N., Valizadeh, N., Nguyen, M., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L., Rabczuk, T.: An extended isogeometric thin shell analysis based on Kirchhoff–Love theory. Comput. Methods Appl. Mech. Eng. 284, 265–291 (2015)

    MathSciNet  Google Scholar 

  37. Zou, Z., Hughes, T., Scott, M., Sauer, R., Savitha, E.: Galerkin formulations of isogeometric shell analysis: alleviating locking with Greville quadratures and higher-order elements. Comput. Method Appl. Mech. Eng. 380, 113757 (2021)

    MathSciNet  Google Scholar 

  38. da Veiga, L.B., Hughes, T.J.R., Kiendl, J., Lovadina, C., Niiranen, J., Reali, A., Speleers, H.: A locking-free model for Reissner–Mindlin plates: analysis and isogeometric implementation via NURBS and triangular NURPS. Math. Models Methods Appl. Sci. 25(08), 1519–1551 (2015)

    MathSciNet  Google Scholar 

  39. Benson, D., Bazilevs, Y., Hsu, M., Hughes, T.: Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Method. Appl. Mech. Eng. 199(5), 276–289 (2010)

    MathSciNet  Google Scholar 

  40. Li, L., Henshaw, W.D., Banks, J.W., Schwendeman, D.W., Main, G.A.: A stable partitioned FSI algorithm for incompressible flow and deforming beams. J. Comput. Phys. 312, 272–306 (2016)

    MathSciNet  Google Scholar 

  41. Banks, J.W., Henshaw, W.D., Schwendeman, D.W., Tang, Q.: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model problem analysis. J. Comput. Phys. 343, 432–468 (2017)

    MathSciNet  Google Scholar 

  42. Banks, J.W., Henshaw, W.D., Schwendeman, D.W., Tang, Q.: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: General formulation. J. Comput. Phys. 343, 469–500 (2017)

    MathSciNet  Google Scholar 

  43. Banks, J.W., Henshaw, W.D., Schwendeman, D.W., Tang, Q.: A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions. J. Comput. Phys. 373, 455–492 (2018)

    MathSciNet  Google Scholar 

  44. Serino, D.A., Banks, J.W., Henshaw, W.D., Schwendeman, D.W.: A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow: model problem analysis. SIAM J. Sci. Comput. 41(4), A2464–A2484 (2019)

    MathSciNet  Google Scholar 

  45. Serino, D.A., Banks, J.W., Henshaw, W.D., Schwendeman, D.W.: A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow. J. Comput. Phys. 399, 1–30 (2019)

    MathSciNet  Google Scholar 

  46. Henshaw, W.D.: A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids. J. Comput. Phys. 113(1), 13–25 (1994)

    MathSciNet  Google Scholar 

  47. Henshaw, W.D., Petersson, N.A.: A split-step scheme for the incompressible Navier–Stokes equations. In: Hafez, M.M. (ed.) Numerical Simulation of Incompressible Flows, pp. 108–125. World Scientific, Singapore (2003)

    Google Scholar 

  48. Meng, F., Banks, J.W., Henshaw, W.D., Schwendeman, D.W.: Fourth-order accurate fractional-step IMEX schemes for the incompressible Navier–Stokes equations on moving overlapping grids. Comput. Method. Appl. Mech. Eng. 366, 113040 (2020)

    MathSciNet  Google Scholar 

  49. Li, L.: A split-step finite-element method for incompressible Navier–Stokes equations with high-order accuracy up-to the boundary. J. Comput. Phys. 408, 109274 (2020)

    MathSciNet  Google Scholar 

  50. Chesshire, G.S., Henshaw, W.D.: Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90(1), 1–64 (1990)

    MathSciNet  Google Scholar 

  51. Henshaw, W.D.: Automatic grid generation. Acta Numer 1996(5), 121–148 (1996)

    MathSciNet  Google Scholar 

  52. Banks, J.W., Henshaw, W.D.: Upwind schemes for the wave equation in second-order form. J. Comput. Phys. 231(17), 5854–5889 (2012)

    MathSciNet  Google Scholar 

  53. Angel, J., Banks, J.W., Henshaw, W.D.: High-order upwind schemes for the wave equation on overlapping grids: Maxwell’s equations in second-order form. J. Comput. Phys. 352, 534–567 (2018)

    MathSciNet  Google Scholar 

  54. Henshaw, W.D.: A high-order accurate parallel solver for Maxwell’s equations on overlapping grids. SIAM J. Sci. Comput. 28(5), 1730–1765 (2006)

    MathSciNet  Google Scholar 

  55. Appelö, D., Banks, J.W., Henshaw, W.D., Schwendeman, D.W.: Numerical methods for solid mechanics on overlapping grids: linear elasticity. J. Comput. Phys. 231(18), 6012–6050 (2012)

    MathSciNet  Google Scholar 

  56. Zhai, S., Feng, X., He, Y.: A robust high-order compact method for the three dimensional nonlinear biharmonic equations. Int. J. Comput. Methods 11(04), 1350065 (2014)

    MathSciNet  Google Scholar 

  57. Gander, M.J., Liu, Y.: On the definition of Dirichlet and Neumann conditions for the biharmonic equation and its impact on associated schwarz methods. In: Lee, C.-O., Cai, X.-C., Keyes, D.E., Kim, H.H., Klawonn, A., Park, E.-J., Widlund, O.B. (eds.) Domain Decomposition Methods in Science and Engineering XXIII, pp. 303–311. Springer International Publishing, Cham (2017)

    Google Scholar 

  58. Bilbao, S.: A family of conservative finite difference schemes for the dynamical von Karman plate equations. Numer. Methods Partial Differ. Equ. 24(1), 193–216 (2008)

    MathSciNet  Google Scholar 

  59. Angel, J., Banks, J.W., Henshaw, W.D.: Efficient high-order upwind difference schemes for the second-order wave equation on overlapping grids, Tech. rep., in preparation (2018)

  60. Newmark, N.M.: A method of computation for structrual dynamics. Proc. Am. Soc. Civ. Eng. 85(3), 67–74 (1959)

    Google Scholar 

  61. Henshaw, W.D.: Oges user guide, a solver for steady state boundary value problems on overlapping grids, Research Report UCRL-MA-132234, Lawrence Livermore National Laboratory (1998)

  62. Henshaw, W.D.: A high-order accurate parallel solver for Maxwell’s equations on overlapping grids, Research Report UCRL-JRNL-215684, http://www.llnl.gov/CASC/Overture/henshaw/publications/henshawMaxwell2006.pd, Lawrence Livermore National Laboratory, accepted for publication, SIAM Journal on Scientific Computing (2006)

  63. Henshaw, W.D.: Time step determination for PDEs with applications to programs written with Overture, Research Report UCRL-MA-134300, Lawrence Livermore National Laboratory (1999)

  64. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks/Cole, Pacific Grove (1989)

    Google Scholar 

  65. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. John Wiley and Sons Inc., Hoboken (1995)

    Google Scholar 

  66. Durran, D.R.: Numerical Methods for Fluid Dynamics With Applications to Geophysics. Springer, New York (2010)

    Google Scholar 

  67. Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, New Mexico (1998)

    Google Scholar 

  68. Wah, T.: Vibration of circular plates. J. Acoust. Soc. Am. 34(3), 275–281 (1962)

    Google Scholar 

  69. Pezzulla, M., Strong, E., Gallaire, F., Reis, P.: The remarkable bending properties of perforated plates. Phys. Rev. Fluids 5, 084103 (2020)

    Google Scholar 

  70. Shrimali, B., Pezzulla, M., Poincloux, S., Reis, P.M., Lopez-Pamies, O.: The remarkable bending properties of perforated plates. J. Mech. Phys. Solids 154, 104514 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

L. Li is grateful to Professor W.D. Henshaw of Rensselaer Polytechnic Institute (RPI) for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Li.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Li: Research supported by the Louisiana Board of Regents Support Fund under contract No. LEQSF(2018-21)-RD-A-23.

Q. Tang: Research supported by the U.S. Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR) through DOE-FOA-2493.

Appendix A

Appendix A

1.1 Appendix A.1: Transformed PDE on reference domain

The specific formula for the equation (1) transformed into the reference domain is given by

$$\begin{aligned} M\frac{\partial ^2 W}{\partial t^2}={{\mathcal {L}}}W + F, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {L}} W&=\left( -K\right) \,W\\&\quad +\left( T\,\left( r_{xx}+r_{yy}\right) -D\,\left( r_{xxxx}+2\,r_{xxyy}+r_{yyyy}\right) \right) \,{W_{r}}\\&\quad +\left( T\,\left( s_{xx}+s_{yy}\right) -D\,\left( s_{xxxx}+2\,s_{xxyy}+s_{yyyy}\right) \right) \,{W_{s}}\\&\quad +\left( T\,\left( r_{x}^2+r_{y}^2\right) -D\,\left( 3\,r_{xx}^2+2\,r_{xx}\,r_{yy}+4\,r_{xy}^2+3\,r_{yy}^2\right. \right. \\&\left. \left. \quad +4\,r_{x}\,r_{xxx}+4\,r_{x}\,r_{xyy}+4\,r_{xxy}\,r_{y}+4\,r_{y}\,r_{yyy}\right) \right) \,{W_{rr}}\\&\quad +(T\,\left( 2\,r_{x}\,s_{x}+2\,r_{y}\,s_{y}\right) -D\,(4\,r_{x}\,s_{xxx}+4\,r_{xxx}\,s_{x}+4\,r_{x}\,s_{xyy}+4\,r_{xyy}\,s_{x}+6\,r_{xx}\,s_{xx}\\&\quad +8\,r_{xy}\,s_{xy}+4\,r_{xxy}\,s_{y}+4\,r_{y}\,s_{xxy}+2\,r_{xx}\,s_{yy}+2\,r_{yy}\,s_{xx}\\&\quad +4\,r_{y}\,s_{yyy}+4\,r_{yyy}\,s_{y}+6\,r_{yy}\,s_{yy}))\,{W_{rs}}\\&\quad +\left( T\,\left( s_{x}^2+s_{y}^2\right) -D\,\left( 3\,s_{xx}^2+2\,s_{xx}\,s_{yy}\right. \right. \\&\left. \left. \quad +4\,s_{xy}^2+3\,s_{yy}^2+4\,s_{x}\,s_{xxx}+4\,s_{x}\,s_{xyy}+4\,s_{xxy}\,s_{y}+4\,s_{y}\,s_{yyy}\right) \right) \,{W_{ss}}\\&\quad +\left( -D\,\left( 6\,r_{x}^2\,r_{xx}+2\,r_{xx}\,r_{y}^2+6\,r_{y}^2\,r_{yy}+2\,r_{x}\,\left( r_{x}\,r_{yy}+2\,r_{xy}\,r_{y}\right) +4\,r_{x}\,r_{xy}\,r_{y}\right) \right) \,{W_{rrr}}\\&\quad +(-D\,(2\,r_{x}\,\left( r_{x}\,s_{yy}+2\,r_{xy}\,s_{y}+2\,r_{y}\,s_{xy}+r_{yy}\,s_{x}\right) +3\,r_{x}^2\,s_{xx}+2\,r_{y}^2\,s_{xx}+3\,r_{y}^2\,s_{yy}\\&\quad +2\,s_{x}\,\left( r_{x}\,r_{yy}+2\,r_{xy}\,r_{y}\right) +r_{x}\,\left( 3\,r_{x}\,s_{xx}+3\,r_{xx}\,s_{x}\right) \\&\quad +4\,r_{xy}\,\left( r_{x}\,s_{y}+r_{y}\,s_{x}\right) +r_{y}\,\left( 3\,r_{y}\,s_{yy}+3\,r_{yy}\,s_{y}\right) \\&\quad +9\,r_{x}\,r_{xx}\,s_{x}+4\,r_{x}\,r_{y}\,s_{xy}+4\,r_{xx}\,r_{y}\,s_{y}+9\,r_{y}\,r_{yy}\,s_{y}))\,{W_{rrs}}\\&\quad +(-D\,(2\,s_{x}\,\left( r_{x}\,s_{yy}+2\,r_{xy}\,s_{y}+2\,r_{y}\,s_{xy}+r_{yy}\,s_{x}\right) +3\,r_{xx}\,s_{x}^2+2\,r_{xx}\,s_{y}^2+3\,r_{yy}\,s_{y}^2\\&\quad +s_{x}\,\left( 3\,r_{x}\,s_{xx}+3\,r_{xx}\,s_{x}\right) +4\,s_{xy}\,\left( r_{x}\,s_{y}+r_{y}\,s_{x}\right) \\&\quad +s_{y}\,\left( 3\,r_{y}\,s_{yy}+3\,r_{yy}\,s_{y}\right) +2\,r_{x}\,\left( s_{x}\,s_{yy}+2\,s_{xy}\,s_{y}\right) \\&\quad +9\,r_{x}\,s_{x}\,s_{xx}+4\,r_{xy}\,s_{x}\,s_{y}+4\,r_{y}\,s_{xx}\,s_{y}+9\,r_{y}\,s_{y}\,s_{yy}))\,{W_{rss}}\\&\quad +\left( -D\,\left( 6\,s_{x}^2\,s_{xx}+2\,s_{xx}\,s_{y}^2+6\,s_{y}^2\,s_{yy}+2\,s_{x}\,\left( s_{x}\,s_{yy}+2\,s_{xy}\,s_{y}\right) +4\,s_{x}\,s_{xy}\,s_{y}\right) \right) \,{W_{sss}}\\&\quad +\left( -D\,\left( r_{x}^4+2\,r_{x}^2\,r_{y}^2+r_{y}^4\right) \right) \,{W_{rrrr}}\\&\quad +\left( -D\,\left( r_{x}\,\left( s_{x}\,r_{y}^2+2\,r_{x}\,s_{y}\,r_{y}\right) \,2+4\,r_{x}^3\,s_{x}+4\,r_{y}^3\,s_{y}+2\,r_{x}\,r_{y}^2\,s_{x}\right) \right) \,{W_{rrrs}}\\&\quad +\left( -D\,\left( 6\,r_{x}^2\,s_{x}^2+6\,r_{y}^2\,s_{y}^2+r_{x}\,\left( r_{x}\,s_{y}^2+2\,r_{y}\,s_{x}\,s_{y}\right) \,2+s_{x}\,\left( s_{x}\,r_{y}^2+2\,r_{x}\,s_{y}\,r_{y}\right) \,2\right) \right) \,{W_{rrss}}\\&\quad +\left( -D\,\left( s_{x}\,\left( r_{x}\,s_{y}^2+2\,r_{y}\,s_{x}\,s_{y}\right) \,2+4\,r_{x}\,s_{x}^3+4\,r_{y}\,s_{y}^3+2\,r_{x}\,s_{x}\,s_{y}^2\right) \right) \,{W_{rsss}}\\&\quad +\left( -D\,\left( s_{x}^4+2\,s_{x}^2\,s_{y}^2+s_{y}^4\right) \right) \,{W_{ssss}}. \end{aligned}$$

The definitions of coefficients \(a_i({\textbf{r}}), b_{ij}({\textbf{r}}),c_{ijk}({\textbf{r}}),d_{ijkl}({\textbf{r}})\) (coefficients in front of the red terms) can be readily read off the above formula for \({{\mathcal {L}}}W\).

1.2 Appendix A.2: Formula of the Discrete transformation

The Fourier transform (symbol) of the discrete operator \({{\mathcal {L}}}_h\) is

$$\begin{aligned} {\hat{Q}}(\xi _r,\xi _s;{\textbf{r}})&=-K-b_{11}\frac{4\sin ^2(\xi _r/2)}{h_r^2}-b_{12} \frac{\sin (\xi _r)\sin (\xi _s)}{h_r h_s}\\&\quad -b_{22}\frac{4\sin ^2(\xi _s/2)}{h_s^2}+d_{1111}\frac{16\sin ^4(\xi _r/2)}{h_r^4}\\&\quad +d_{1112}\frac{4\sin ^2(\xi _r/2)\sin (\xi _r)\sin (\xi _s)}{h_r^3h_s}\\&\quad +d_{1122}\frac{16\sin ^2(\xi _r/2)\sin ^2(\xi _s/2)}{h_r^2h_s^2}+d_{1222}\frac{4\sin (\xi _r)\sin ^2(\xi _s/2)\sin (\xi _s)}{h_rh_s^3}\\&\quad +d_{2222}\frac{16\sin ^4(\xi _s/2)}{h_s^4} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ji, H. & Tang, Q. Numerical Methods for Fourth-Order PDEs on Overlapping Grids with Application to Kirchhoff–Love Plates. J Sci Comput 98, 41 (2024). https://doi.org/10.1007/s10915-023-02430-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02430-z

Keywords

Navigation