Skip to main content
Log in

A Priori Error Analysis of Linear and Nonlinear Periodic Schrödinger Equations with Analytic Potentials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the numerical analysis of linear and nonlinear Schrödinger equations with periodic analytic potentials. We prove that, for linear equations, when the potential is analytic in a strip of width A of the complex plane, the solution is analytic in the same strip, ensuring an exponential convergence of the planewave discretization of the equation with rate A. On the other hand, for nonlinear equations, we find that the solution may be analytic only in a strip of width smaller than A. This behavior is illustrated by two examples using a combination of numerical and analytical arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

All the scripts used to generate the plots of Figs. 1, 2, 3, 4, 5 and 6 are available online at https://github.com/gkemlin/analytic_potentials.

References

  1. Babuška, I., Osborn, J.: Eigenvalue problems. In Handbook of Numerical Analysis, volume 2 of Finite Element Methods (Part 1), pages 641–787. Elsevier, (1991)

  2. Bender, C. M., Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers. 1: Asymptotic Methods and Perturbation Theory. Springer, New York Heidelberg, (1999)

  3. Bernstein, S.: Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre. Math. Ann. 59(1–2), 20–76 (1904)

    Article  MathSciNet  Google Scholar 

  4. Blatt, S.: On the analyticity of solutions to non-linear elliptic partial differential systems. arXiv:2009.08762 [math.AP], (2020)

  5. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

    Article  Google Scholar 

  6. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45(1), 90–117 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models. ESAIM: Math. Modell. Numer. Anal., 46(2):341–388, (2012)

  8. Friedman, A.: On the regularity of the solutions of non-linear elliptic and parabolic systems of partial differential equations. Indiana Univ. Math. J. 7(1), 43–59 (1958)

    Article  Google Scholar 

  9. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M.: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter: An Institute Phys. J., 21(39):395502, (2009)

  10. Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54(3), 1703 (1996)

    Article  Google Scholar 

  11. Gonze, X., Amadon, B., Antonius, G., Arnardi, F., Baguet, L., Beuken, J.-M., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., Brouwer, N., Bruneval, F., Brunin, G., Cavignac, T., Charraud, J.-B., Chen, W., Côté, M., Cottenier, S., Denier, J., Geneste, G., Ghosez, P., Giantomassi, M., Gillet, Y., Gingras, O., Hamann, D.R., Hautier, G., He, X., Helbig, N., Holzwarth, N., Jia, Y., Jollet, F., Lafargue-Dit-Hauret, W., Lejaeghere, K., Marques, M.A.L., Martin, A., Martins, C., Miranda, H.P.C., Naccarato, F., Persson, K., Petretto, G., Planes, V., Pouillon, Y., Prokhorenko, S., Ricci, F., Rignanese, G.-M., Romero, A.H., Schmitt, M.M., Torrent, M., van Setten, M.J., Van Troeye, B., Verstraete, M.J., Zérah, G., Zwanziger, J.W.: The Abinit project: Impact, environment and recent developments. Comput. Phys. Commun. 248, 107042 (2020)

    Article  Google Scholar 

  12. Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58(7), 3641–3662 (1998)

    Article  Google Scholar 

  13. Hashimoto, Y.: A Remark on the Analyticity of the Solutions for Non-Linear Elliptic Partial Differential Equations. Tokyo J. Math. 29(2), 271–281 (2006)

    Article  MathSciNet  Google Scholar 

  14. Herbst, M.F., Levitt, A., Cancès, E.: DFTK: A Julian approach for simulating electrons in solids. Proc. JuliaCon Conf. 3(26), 69 (2021)

    Article  Google Scholar 

  15. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Progr. 45(1–3), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  16. Morrey, C. B.: On the Analyticity of the Solutions of Analytic Non-Linear Elliptic Systems of Partial Differential Equations: Part I. Analyticity in the Interior. Am. J. Math., 80(1):198, (1958)

  17. Morrey, C. B.: On the Analyticity of the Solutions of Analytic Non-Linear Elliptic Systems of Partial Differential Equations: Part II. Analyticity at the Boundary. Am. J. Math., 80(1):219, (1958)

  18. Nottoli, T., Giannì, I., Levitt, A., Lipparini, F.: A robust, open-source implementation of the locally optimal block preconditioned conjugate gradient for large eigenvalue problems in quantum chemistry. Theoret. Chem. Acc. 142(8), 69 (2023)

    Article  Google Scholar 

  19. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244–13249 (1992)

    Article  Google Scholar 

  20. Petrovskii, I.G.: Sur l’analyticité des solutions des systèmes d’équations différentielles. Matematiceskij sbornik 47(1), 3–70 (1939)

    Google Scholar 

  21. Ratcliff, L.E., Dawson, W., Fisicaro, G., Caliste, D., Mohr, S., Degomme, A., Videau, B., Cristiglio, V., Stella, M., D’Alessandro, M., Goedecker, S., Nakajima, T., Deutsch, T., Genovese, L.: Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations. J. Chem. Phys. 152(19), 194110 (2020)

    Article  Google Scholar 

  22. Reed, M., Simon, B.: Analysis of Operators. Number 4 in Methods of Modern Mathematical Physics. Academic Press, (1978)

  23. Romero, A.H., Allan, D.C., Amadon, B., Antonius, G., Applencourt, T., Baguet, L., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., Bruneval, F., Brunin, G., Caliste, D., Côté, M., Denier, J., Dreyer, C., Ghosez, P., Giantomassi, M., Gillet, Y., Gingras, O., Hamann, D.R., Hautier, G., Jollet, F., Jomard, G., Martin, A., Miranda, H.P.C., Naccarato, F., Petretto, G., Pike, N.A., Planes, V., Prokhorenko, S., Rangel, T., Ricci, F., Rignanese, G.-M., Royo, M., Stengel, M., Torrent, M., van Setten, M.J., Van Troeye, B., Verstraete, M.J., Wiktor, J., Zwanziger, J.W., Gonze, X.: ABINIT: Overview and focus on selected capabilities. J. Chem. Phys. 152(12), 124102 (2020)

    Article  Google Scholar 

  24. Slater, J.C.: A Simplification of the Hartree-Fock Method. Phys. Rev. 81(3), 385–390 (1951)

    Article  Google Scholar 

  25. Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993–2006 (1991)

    Article  Google Scholar 

  26. Vrabel, R., Tanuska, P., Vazan, P., Schreiber, P., Liska, V.: Duffing-Type Oscillator with a Bounded from above Potential in the Presence of Saddle-Center Bifurcation and Singular Perturbation: Frequency Control. Abstr. Appl. Anal. 1–7, 2013 (2013)

    MathSciNet  Google Scholar 

  27. Walter, W.: Ordinary Differential Equations. Number 182 in Graduate Texts in Mathematics ; Readings in Mathematics. Springer, New York, (1998)

  28. Wazewski, T.: Systèmes des équations et des inégualités différentielles ordinaires aux deuxièmes membres monotones et leurs applications. Annales de la Société polonaise de mathématique 23, 112–166 (1950)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Geneviève Dusson and Michael F. Herbst for fruitful discussions. The authors would also like to thank the anonymous reviewers for their comments and suggestions.

Funding

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspard Kemlin.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Extension to the Multidimensional Case with Application to Kohn–Sham Models

The goal of this section is to extend the previous results to the multidimensional case and apply them to the linear version of the Kohn–Sham equations (1). To this end, consider a Bravais lattice \(\mathbb {L}=\mathbb {Z}{\varvec{a}}_1+ \cdots + \mathbb {Z}{\varvec{a}}_d\) where \({\varvec{a}}_1,\dots , {\varvec{a}}_d\) are linearly independent vectors of \(\mathbb {R}^d\) (\(d=3\) for KS-DFT). Up to an affine change of variables (which preserves analyticity), we can take without loss of generality \(\mathbb {L}= 2\pi \mathbb {Z}^{d}\). We denote by \(\Omega =[0,2\pi )^{d}\) a unit cell, by \(\mathbb {L}^* = \mathbb {Z}^{d}\) the reciprocal lattice, by \(e_{{\varvec{G}}}({\varvec{x}})=|\Omega |^{-1/2}{\textrm{e}}^{i{\varvec{G}} \cdot {\varvec{x}}}\) the Fourier mode with wavevector \({\varvec{G}} \in \mathbb {L}^*\), and by

$$\begin{aligned} H^s_{{\textrm{per}},\mathbb {L}} {:}{=}\left\{ u= \sum _{{\varvec{G}} \in \mathbb {L}^*} \widehat{u}_{{\varvec{G}}} e_{{\varvec{G}}} \, \bigg \vert \, \sum _{{\varvec{G}} \in \mathbb {L}^*} (1+|{\varvec{G}}|^2)^s |{\widehat{u}}_{{\varvec{G}}}|^2 < \infty \right\} \end{aligned}$$

the \(\mathbb {L}\)-periodic Sobolev spaces endowed with their usual inner products. All the arguments in Sects. 3.1-3.3 can be extended to the multidimensional case by introducing the Hilbert spaces

$$\begin{aligned} \mathcal {H}_{A,\mathbb {L}} {:}{=}\left\{ u \in L^2_{{\textrm{per}},\mathbb {L}} \,\bigg \vert \, \sum _{{\varvec{G}}\in \mathbb {L}} {w}_{A,\mathbb {L}} ({\varvec{G}}) \left| \widehat{u}_{{\varvec{G}}} \right| ^2 < \infty \right\} ,\quad (u,v)_{A,\mathbb {L}} {:}{=}\sum _{{\varvec{G}}\in \mathbb {L}^*} {w}_{A,\mathbb {L}}({\varvec{G}}) \overline{\widehat{u}_{{\varvec{G}}}} \widehat{v}_{{\varvec{G}}}, \end{aligned}$$

where \(\displaystyle {{w}_{A,\mathbb {L}}({\varvec{G}}) = \sum _{n=1}^d w_A(G_{n})}\). Each \(u \in \mathcal {H}_{A,\mathbb {L}}\) can be extended to an analytic function \(u(z_1,\dots ,z_d)\) of d complex variables defined on a neighborhood on \(\mathbb {R}^d\), and it holds

$$\begin{aligned} \sum _{{\varvec{G}}\in \mathbb {L}^*} w_{A,\mathbb {L}}({\varvec{G}}) \left| \widehat{u}_{{\varvec{G}}} \right| ^2 = \frac{1}{2} \sum _{j=1}^d \int _{\Omega } \left| {u}({\varvec{x}}+ \textrm{i} e_{j}) \right| ^2 + \left| {u}({\varvec{x}}- \textrm{i} e_{j}) \right| ^2 \textrm{d}{\textbf{x}}. \end{aligned}$$

with \(e_{1},\dots , e_d\) the canonical basis vectors. The approximation space \(X_{N,\mathbb {L}}\) is then defined as

$$\begin{aligned} X_{N,\mathbb {L}} {:}{=}\text{ Span } (e_{{\varvec{G}}}, \, {\varvec{G}} \in \mathbb {L}^*, \, |{{\varvec{G}}}| \leqslant N ), \end{aligned}$$

and the inverse \(T_{22,\mathbb {L}}^{-1}\) of the restriction \(T_{22,\mathbb {L}}\) of the operator \(-\Delta \) on \(L^2_{{\textrm{per}},\mathbb {L}}\) to the invariant subspace \(X_{N,\mathbb {L}}^\perp = \text{ Span } (e_{{\varvec{G}}}, \, {\varvec{G}} \in \mathbb {L}^*, \, |{{\varvec{G}}}| > N )\) satisfies

$$\begin{aligned} \Vert T^{-1}_{22,\mathbb {L}} \Vert _{\mathcal {L}(X_{N,\mathbb {L}}^\perp )} = \Vert T^{-1}_{22,\mathbb {L}} \Vert _{\mathcal {L}(\mathcal {H}_{A,\mathbb {L}} \cap X_{N,\mathbb {L}}^\perp )} \leqslant N^{-2}. \end{aligned}$$

The proofs of Theorems 1, 2 and 3 can thus be straightforwardly adapted to the multidimensional case.

Lastly, if \(V \in \mathcal {H}_{B,\mathbb {L}}\) for some \(B > 0\), the Schrödinger operator \(H = -\Delta + V\) considered this time as a Schrödinger operator on \(L^2(\mathbb {R}^d,\mathbb {C})\) with an \(\mathbb {L}\)-periodic potential, can be decomposed by the Bloch transform [22, Section XIII.16] and its Bloch fibers are the self-adjoint operators on \(L^2_{{\textrm{per}},\mathbb {L}}\) with domain \(H^2_{{\textrm{per}},\mathbb {L}}\) and form domain \(H^1_{{\textrm{per}},\mathbb {L}}\) defined as \(H_{{\varvec{k}}} = (-\i \nabla + {\varvec{k}})^2 + V\). The following result is concerned with the Bloch eigenmodes of the \(H_{{\varvec{k}}}\)’s.

Theorem 6

Let \(B > 0\) and \(V \in \mathcal {H}_{B,\mathbb {L}}\). For each \({\varvec{k}} \in \mathbb {R}^d\), the eigenfunctions of the Bloch fibers \(H_{{\varvec{k}}} = (- i\nabla +{\varvec{k}})^2 + V\) of the periodic Schrödinger operator \(H=-\Delta + V\) are in \(\mathcal {H}_{A,\mathbb {L}}\) for any \(0<A<B\). Let \(\lambda _{1,{\varvec{k}}} \leqslant \lambda _{2,{\varvec{k}}} \leqslant \cdots \) be the eigenvalues of \(H_{{\varvec{k}}}\) counted with multiplicities and ranked in non-decreasing order, and \(\lambda _{1,{\varvec{k}},N} \leqslant \lambda _{2,{\varvec{k}},N} \leqslant \cdots \leqslant \lambda _{d_{\mathbb {L},N},{\varvec{k}},N}\) the eigenvalues of the variational approximation of \(H_{{\varvec{k}}}\) in the \(d_{\mathbb {L},N}\)-dimensional space

$$\begin{aligned} X_{\mathbb {L},{\varvec{k}}, N}{:}{=}\,{\textrm{Span}}(e_{\varvec{G}}, \, {\varvec{G}} \in \mathbb {L}^*, \, |{\varvec{G}} + {\varvec{k}}| \leqslant N). \end{aligned}$$

Then, for each \(0< A < B\) and \(i \in \mathbb {N}^*\), there exists a constant \(C_{i,A} \in \mathbb {R}_+\) such that

$$\begin{aligned} 0 \leqslant \max _{{\varvec{k}} \in \Omega ^*} (\lambda _{i,{\varvec{k}},N} - \lambda _{i,{\varvec{k}}}) \leqslant C_{i,A}{\textrm{e}}^{-2AN}, \end{aligned}$$
(19)

where \(\Omega ^*\) is the first Brillouin zone (i.e. the Voronoi cell of the lattice \(\mathbb {L}\) of \(\mathbb {R}^d\) containing the origin).

Proof

It suffices to replace in the proofs of Theorems 2 and 3\(X_N\) with \(X_{\mathbb {L},{\varvec{k}}, N}\) and \(T_{22}\) with the restriction \(T_{22,\mathbb {L},{\varvec{k}}}\) of the operator \((- i\nabla + {\varvec{k}})^2\) to the invariant space \(X_{\mathbb {L},{\varvec{k}}, N}^\perp \). The latter is invertible and such that \(\Vert T_{22,\mathbb {L},{\varvec{k}}}^{-1} \Vert _{\mathcal {L}(X_{\mathbb {L},{\varvec{k}}, N}^\perp )} \leqslant N^{-2}\) and \(\Vert T_{22,\mathbb {L},{\varvec{k}}}^{-1} \Vert _{\mathcal {L}(\mathcal {H}_{A,\mathbb {L}} \cap X_{\mathbb {L},{\varvec{k}}, N}^\perp )} \leqslant N^{-2}\). The result then follows similarly. \(\square \)

Remark 3

As a conclusion, let us mention that, under appropriate assumptions, we can extend these results to the KS-DFT equations (1) with GTH pseudopotentials in the case where an analytic parametrization of the exchange-correlation functional is used. This is relevant for instance when studying condensed-phase systems, for which the periodic setting is well suited, and where the commonly used approximations of \(V_{\textrm{xc},\rho }\) are analytic on the positive density values that are of interest in such cases [19]. Then we can rewrite (1) as a system of elliptic PDEs:

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle \left( - \frac{1}{2} \Delta + V_{\textrm{nl}} + V_{\textrm{loc}} + V_{\textrm{H},\rho } + V_{{\textrm{xc}},\rho } \right) \varphi _i - \lambda _i \varphi _i = 0, \quad (\varphi _i,\varphi _{j})_{L^2_{{\textrm{per}},\mathbb {L}}} = \delta _{ij}, \\ \displaystyle \rho ({\varvec{x}}) = \sum _{i=1}^{N_{\textrm{p}}} |\varphi _i({\varvec{x}})|^2, \\ \displaystyle - \Delta V_{\textrm{H},\rho }({\varvec{x}}) = 4\pi \left( \rho ({\varvec{x}}) - \frac{1}{|\Omega |}\int _\Omega \rho \right) , \quad \int _\Omega V_{\textrm{H},\rho } = 0, \end{array}\right. } \end{aligned}$$

We can then use known results for elliptic systems of PDEs [16, 17] to conclude, in a way similar to what we proved in Theorem 4, that the orbitals \(\varphi _i\) belong to \(\mathcal {H}_{A,\mathbb {L}}\) for some \(A>0\). In particular, this leads to the exponential convergence of planewave approximations, justifying the use of GTH pseudopotentials.

B Proof of Lemma 1

We start by rewriting (18) as a first-order ODE on \(\Psi _\varepsilon (y) {:}{=}\begin{bmatrix} \psi _\varepsilon (y) \\ \psi '_\varepsilon (y) \end{bmatrix} \in \mathbb {R}^2\), starting at \(y_\eta \geqslant B_0\):

$$\begin{aligned} \Psi '_\varepsilon (y) = \begin{bmatrix} \Psi _{\varepsilon ,2}(y) \\ \varepsilon ^{-1} \left( \mu \sinh (y) - \Psi _{\varepsilon ,1}(y) + \Psi _{\varepsilon ,1}^3(y) \right) \end{bmatrix},\quad \Psi _\varepsilon (y_\eta ) {:}{=}\begin{bmatrix} \psi _\varepsilon (y_\eta ) \\ \psi '_\varepsilon (y_\eta ) \end{bmatrix}= \begin{bmatrix} 1+\eta \\ \psi '_\varepsilon (y_\eta ) \end{bmatrix}.\qquad \end{aligned}$$
(20)

We then use the following simplified version of more general comparison results on systems of differential inequalities [27, 28]. In the sequel, the inequality \(a \geqslant b\) for two vectors \(a,b \in \mathbb {R}^d\) means that \(a_i \geqslant b_i\) for all \(1 \leqslant \textrm{i} \leqslant d\).

Theorem 7

(See e.g. [27, p. 112]). Let \(d\geqslant 1\) and \(G: \mathbb {R}^d \rightarrow \mathbb {R}^d\) be locally Lipschitz and quasimonotone in the sense that for all \(X,Z \in {\mathbb {R}}^d\),

$$\begin{aligned} \left( Z_i=X_i \hbox { and } X_{j} \leqslant Y_{j} \text{ for }\ j\ne i \right) \quad \Rightarrow \quad \left( G(X) \leqslant G(Z)\right) . \end{aligned}$$

Let \(0 \leqslant y_0 < y_{\textrm{M}} \leqslant \infty \) and \(\Phi \in C^1 ([y_0,y_{\textrm{M}}),\mathbb {R}^d)\) and \(\Psi \in C^1 ([y_0,y_{\textrm{M}}),\mathbb {R}^d)\) satisfying respectively the ODE

$$\begin{aligned} \Phi '(y) = G(\Phi (y)),\qquad \Phi (y_0) \in \mathbb {R}^d, \end{aligned}$$

and the differential inequality

$$\begin{aligned} \Psi '(y) \geqslant G(\Psi (y)),\qquad \Psi (y_0) = \Phi (y_0). \end{aligned}$$

Then we have

$$\begin{aligned} \Psi (y) \geqslant \Phi (y). \end{aligned}$$

on \([y_0,y_\textrm{M})\).

To apply this result to (20), we introduce the function \(G_\varepsilon : \mathbb {R}^2 \rightarrow \mathbb {R}^2\) defined by

$$\begin{aligned} \forall \ X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \in \mathbb {R}^2, \quad G_\varepsilon (X) = \begin{bmatrix} X_2 \\ \varepsilon ^{-1}(-X_1+X_1^3) \end{bmatrix}, \end{aligned}$$

and the maximal solution \(\Phi _\varepsilon \) to

$$\begin{aligned} \Phi '_\varepsilon (y) = G_\varepsilon ( \Phi _\varepsilon (y)), \qquad \Phi _\varepsilon (y_\eta ) = \begin{bmatrix} 1+\eta \\ \psi _\varepsilon '(y_\eta ) \end{bmatrix}. \end{aligned}$$
(21)

As \(\sinh (y) \geqslant 0\) for all \(y \geqslant 0\), we have the following differential inequality:

$$\begin{aligned} \Psi '_\varepsilon (y) \geqslant G_\varepsilon (\Psi _\varepsilon (y)), \qquad \Psi _\varepsilon (y_\eta ) = \Phi _\varepsilon (y_\eta ). \end{aligned}$$

Note that, by convexity, \(\psi _\varepsilon (y) \geqslant \psi _\varepsilon (y_\eta ) > 1\) for \(y\geqslant y_\eta \): \(G_\varepsilon \) is indeed quasimonotone on the domain of interest. We are now ready to compute an upper bound of \(Y_\varepsilon \) with the use of Theorem 7, which yields

$$\begin{aligned} \forall \ y \geqslant y_\eta ,\ \Psi _\varepsilon (y) \geqslant \Phi _\varepsilon (y). \end{aligned}$$

This leads us to the study of the ODE

$$\begin{aligned} {\left\{ \begin{array}{ll} \varepsilon \phi ''_\varepsilon = -\phi _\varepsilon + \phi _\varepsilon ^3 \\ \phi _\varepsilon (y_\eta ) = 1+\eta ,\ \phi '_\varepsilon (y_\eta ) = \psi '_\varepsilon (y_\eta )>0. \end{array}\right. } \end{aligned}$$

We have

$$\begin{aligned} \frac{\varepsilon }{2}\frac{\textrm{d}}{\textrm{d}y} \left( \phi '_\varepsilon \right) ^2 = \frac{\textrm{d}}{\textrm{d}y}\left( -\frac{1}{2} \phi _\varepsilon ^2 + \frac{1}{4} \phi _\varepsilon ^4 \right) , \end{aligned}$$

from which we deduce

$$\begin{aligned} \frac{\varepsilon }{2}(\phi '_\varepsilon )^2 = \frac{1}{4}\phi _\varepsilon ^4 - \frac{1}{2}\phi _\varepsilon ^2 + C(\eta ), \end{aligned}$$

with

$$\begin{aligned}\begin{aligned} C(\eta )&= -\frac{1}{4}(1+\eta )^4 +\frac{1}{2}(1+\eta )^2 + \frac{\varepsilon }{2}(\psi '_\varepsilon (y_\eta ))^2\\&\geqslant -\frac{1}{4}(1+\eta )^4 +\frac{1}{2}(1+\eta )^2 + \frac{\varepsilon }{2}(\psi '_\varepsilon (y_0))^2,\\ \end{aligned} \end{aligned}$$
Fig. 7
figure 7

Description of \(X_\mu \) for \(\mu =0.5\), along with the plot of \(\psi _\varepsilon \) and the lower bound \(\xi _{\varepsilon ,\eta }\) for \(\varepsilon =0.1\), \(\eta =0.5\). While \(y < B_0\), \(\psi _\varepsilon \) can possibly oscillate around \(\psi _0\), but as soon as \(y\geqslant B_0\), \(\psi _\varepsilon \) is strictly convex and has no other choice than to explode in finite time \(Y_\varepsilon \leqslant Y_{\varepsilon ,\eta }\), where \(Y_{\varepsilon ,\eta }\) is the explosion time of the lower bound \(\xi _{\varepsilon ,\eta }\)

where \(C(\eta )\) is computed from the initial conditions at \(y=y_\eta \) and \(B_0< y_0 < y_\eta \) is such that \(\psi _\varepsilon (y_0)=1\). Note that \(\eta \mapsto -\frac{1}{4}(1+\eta )^4 +\frac{1}{2}(1+\eta )^2 + \frac{\varepsilon }{2}(\psi '_\varepsilon (y_0))^2\) is decreasing on \(\mathbb {R}_*^+\) and takes the value \(\frac{1}{4} + \frac{\varepsilon }{2}(\psi '_\varepsilon (y_0))^2 > \frac{1}{4}\) at \(\eta = 0\). Thus, for \(\eta >0\) small enough, \(C(\eta ) \geqslant \frac{1}{4}\) and we have

$$\begin{aligned} \begin{aligned} \frac{\varepsilon }{2}(\phi _\varepsilon ')^2&\geqslant \frac{1}{4}\phi _\varepsilon ^4 - \frac{1}{2}\phi _\varepsilon ^2 + \frac{1}{4} = \frac{1}{4}\left( \phi _\varepsilon ^2-1 \right) ^2, \end{aligned} \end{aligned}$$

hence

$$\begin{aligned} \phi _\varepsilon ' \geqslant \frac{1}{\sqrt{2\varepsilon }}\left( \phi _\varepsilon ^2-1 \right) \quad \text{ on } [y_\eta ,Y_\varepsilon ). \end{aligned}$$

Finally, we consider the ODE

$$\begin{aligned} \xi '_{\varepsilon ,\eta } = \frac{1}{\sqrt{2\varepsilon }}(\xi _{\varepsilon ,\eta }^2 -1),\qquad \xi _{\varepsilon ,\eta }(y_\eta ) = 1+\eta , \end{aligned}$$

whose solution is

$$\begin{aligned} \xi _{\varepsilon ,\eta }(y) = \frac{1+\frac{2}{\eta } + \exp \left( \frac{y-y_\eta }{\sqrt{\varepsilon /2}} \right) }{1+\frac{2}{\eta } - \exp \left( \frac{y-y_\eta }{\sqrt{\varepsilon /2}} \right) }, \end{aligned}$$

which is defined only up to \(Y_{\varepsilon ,\eta } {:}{=}\sqrt{\frac{\varepsilon }{2}}\log \left( 1 + \frac{2}{\eta } \right) + y_\eta \). Applying again Theorem 7, we have that \(\phi _\varepsilon (y) \geqslant \xi _{\varepsilon ,\eta }(y)\) for any \(y \geqslant y_\eta \) such that both functions are still finite. Putting everything together, we obtain that \(\psi _\varepsilon \) is only defined up to some \(Y_\varepsilon \) with \(B_0< Y_\varepsilon \leqslant Y_{\varepsilon ,\eta }<\infty \) and that

$$\begin{aligned} \forall \ y\in [y_\eta ,Y_\varepsilon ),\quad \psi _\varepsilon (y)\geqslant \xi _{\varepsilon ,\eta }(y). \end{aligned}$$
(22)

These results are illustrated on Fig. 7, where we plotted the lower bound \(\xi _{\varepsilon ,\eta }\) for \(\varepsilon =0.1\) and \(\eta =0.5\) as well as a numerical approximation of \(\psi _\varepsilon \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancès, E., Kemlin, G. & Levitt, A. A Priori Error Analysis of Linear and Nonlinear Periodic Schrödinger Equations with Analytic Potentials. J Sci Comput 98, 25 (2024). https://doi.org/10.1007/s10915-023-02421-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02421-0

Keywords

Navigation