Skip to main content
Log in

The Hermite Finite Volume Method with Global Conservation Law

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

A Correction to this article was published on 28 February 2024

This article has been updated

Abstract

We construct a high-order (cubic) Hermite finite volume method (FVM-2L) with a two-layered dual strategy on triangular meshes, which possesses the conservation laws in both flux form and equation form. In particular, for problems with Dirichlet boundary conditions, the FVM-2L scheme preserves conservation laws on all triangles, whereas conservation properties may be lost on boundary dual elements by existing vertex-centered finite volume schemes. Theoretically, this is the first \(L^2\) result for the Hermite finite volume method on triangular meshes. Furthermore, the regularity requirement for the \(L^2\) theory of the FVM-2L scheme is reduced to \(u\in H^{k+1}\) (i.e. \(u\in H^{4}\)). While, as a comparison, all existing \(L^2\) results for high-order (\(k\ge 2\)) finite volume schemes require \(u\in H^{k+2}\) in the analysis. Finally, the conservation and convergence properties of the FVM-2L scheme are verified numerically for a selection of elliptic, linear elastic, Stokes, and heat conduction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The code used in this work will be made available upon request to the authors.

Change history

References

  1. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987). https://doi.org/10.1137/0724050

    Article  ADS  MathSciNet  Google Scholar 

  2. Bramkamp, F., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comput. Phys. 197(2), 460–490 (2004). https://doi.org/10.1016/j.jcp.2003.12.005

    Article  ADS  MathSciNet  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (1994). https://doi.org/10.1007/978-1-4757-4338-8

    Book  Google Scholar 

  4. Cai, Z.: On the finite volume element method. Numerische Mathematik 58(1), 713–735 (1990). https://doi.org/10.1007/BF01385651

    Article  MathSciNet  Google Scholar 

  5. Celledoni, E., Jackaman, J.: Discrete conservation laws for finite element discretisations of multisymplectic PDEs. J. Comput. Phys. 444, 110520 (2021). https://doi.org/10.1016/j.jcp.2021.110520

    Article  MathSciNet  Google Scholar 

  6. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47(6), 4021–4043 (2010). https://doi.org/10.1137/080720164

    Article  MathSciNet  Google Scholar 

  7. Chen, Z.: The error estimate of generalized difference method of 3rd-order Hermite type for elliptic partial differential equations. Northeast. Math. J. 8(2), 127–138 (1992). (in Chinese)

    MathSciNet  CAS  Google Scholar 

  8. Chen, Z., Li, R., Zhou, A.: A note on the optimal L2-estimate of the finite volume element method. Adv. Comput. Math. 16(4), 291–303 (2002). https://doi.org/10.1023/A:1014577215948

    Article  MathSciNet  Google Scholar 

  9. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37(2), 191–253 (2012). https://doi.org/10.1007/s10444-011-9201-8

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comput. 84(292), 599–628 (2015). https://doi.org/10.1090/S0025-5718-2014-02881-0

    Article  MathSciNet  Google Scholar 

  11. Chou, S.H., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45(4), 1639–1653 (2007). https://doi.org/10.1137/050643994

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: The finite element method for elliptic problems. Soc. Ind. Appl. Math. (2002). https://doi.org/10.1137/1.9780898719208

    Article  Google Scholar 

  13. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002). https://doi.org/10.1137/S0036142900368873

    Article  MathSciNet  Google Scholar 

  14. Huang, J., Xi, S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35(5), 1762–1774 (1998). https://doi.org/10.1137/S0036142994264699

    Article  MathSciNet  Google Scholar 

  15. Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations. Marcel Dekker, New York (2000). https://doi.org/10.1201/9781482270211

    Book  Google Scholar 

  16. Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57(4), 281–299 (1996). https://doi.org/10.1007/BF02252250

    Article  MathSciNet  Google Scholar 

  17. Lin, Y., Yang, M., Zou, Q.: L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J. Numer. Anal. 53(4), 2030–2050 (2015). https://doi.org/10.1137/140963121

    Article  Google Scholar 

  18. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228(3), 703–716 (2009). https://doi.org/10.1016/j.jcp.2008.09.031

    Article  ADS  MathSciNet  Google Scholar 

  19. Lv, J., Li, Y.: L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37(3), 393–416 (2012). https://doi.org/10.1007/s10444-011-9215-2

    Article  MathSciNet  Google Scholar 

  20. Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50(5), 2379–2399 (2012). https://doi.org/10.1137/100805881

    Article  MathSciNet  Google Scholar 

  21. Nie, C., Shu, S., Liu, M.: A novel monotone finite volume element scheme for diffusion equations. J. Comput. Appl. Math. 414, 114458 (2022). https://doi.org/10.1016/j.cam.2022.114458

    Article  MathSciNet  Google Scholar 

  22. Sheng, Z., Yuan, G.: An improved monotone finite volume scheme for diffusion equation on polygonal meshes. J. Comput. Phys. 231(9), 3739–3754 (2012). https://doi.org/10.1016/j.jcp.2012.01.015

    Article  ADS  MathSciNet  Google Scholar 

  23. Sheng, Z., Yuan, G.: A cell-centered nonlinear finite volume scheme preserving fully positivity for diffusion equation. J. Sci. Comput. 68(2), 521–545 (2016). https://doi.org/10.1007/s10915-015-0148-7

    Article  MathSciNet  Google Scholar 

  24. Süli, E.: The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comput. 59(200), 359 (1992). https://doi.org/10.2307/2153062

    Article  ADS  MathSciNet  Google Scholar 

  25. Terekhov, K.M., Mallison, B.T., Tchelepi, H.A.: Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem. J. Comput. Phys. 330, 245–267 (2017). https://doi.org/10.1016/j.jcp.2016.11.010

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, Q., Zhang, Z., Zhang, X., Zhu, Q.: Energy-preserving finite volume element method for the improved Boussinesq equation. J. Comput. Phys. 270, 58–69 (2014). https://doi.org/10.1016/j.jcp.2014.03.053

    Article  ADS  MathSciNet  Google Scholar 

  27. Wang, X., Huang, W., Li, Y.: Conditioning of the finite volume element method for diffusion problems with general simplicial meshes. Math. Comput. 88(320), 2665–2696 (2019). https://doi.org/10.1090/mcom/3423

    Article  MathSciNet  Google Scholar 

  28. Wang, X., Li, Y.: L2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Numer. Anal. 54(5), 2729–2749 (2016). https://doi.org/10.1137/140988486

    Article  MathSciNet  Google Scholar 

  29. Wang, X., Lv, J., Li, Y.: New superconvergent structures developed from the finite volume element method in 1D. Math. Comput. 90(329), 1179–1205 (2021). https://doi.org/10.1090/mcom/3587

    Article  MathSciNet  Google Scholar 

  30. Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111(3), 469–492 (2009). https://doi.org/10.1007/s00211-008-0189-z

    Article  MathSciNet  Google Scholar 

  31. Yamazaki, H., Weller, H., Cotter, C.J., Browne, P.A.: Conservation with moving meshes over orography. J. Comput. Phys. 461, 111217 (2022). https://doi.org/10.1016/j.jcp.2022.111217

    Article  MathSciNet  Google Scholar 

  32. Yang, H., Yu, B., Li, Y., Yuan, G.: Monotonicity correction for second order element finite volume methods of anisotropic diffusion problems. J. Comput. Phys. 449, 110759 (2022). https://doi.org/10.1016/j.jcp.2021.110759

    Article  MathSciNet  Google Scholar 

  33. Yang, M.: A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM Math. Model. Numer. Anal. 40(6), 1053–1067 (2006). https://doi.org/10.1051/m2an:2007002

    Article  MathSciNet  Google Scholar 

  34. Yang, P., Wang, X., Li, Y.: Construction and analysis of the quadratic finite volume methods on tetrahedral meshes. Sci. China Math. (2022). https://doi.org/10.1007/s11425-021-1984-4

    Article  Google Scholar 

  35. Yuan, G., Hang, X.: Conservative parallel schemes for diffusion equations. Chin. J. Comput. Phys. 27(4), 475–491 (2010). https://doi.org/10.3969/j.issn.1001-246X.2010.04.001. (in Chinese)

    Article  Google Scholar 

  36. Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227(12), 6288–6312 (2008). https://doi.org/10.1016/j.jcp.2008.03.007

    Article  ADS  MathSciNet  Google Scholar 

  37. Zhang, X., Su, S., Wu, J.: A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids. J. Comput. Phys. 344, 419–436 (2017). https://doi.org/10.1016/j.jcp.2017.04.070

    Article  ADS  MathSciNet  Google Scholar 

  38. Zhang, Y., Wang, X.: Unified construction and L2 analysis for the finite volume element method over tensorial meshes. Adv. Comput. Math. 49(1), 2 (2023). https://doi.org/10.1007/s10444-022-10004-0

    Article  Google Scholar 

  39. Zhang, Z., Zou, Q.: A family of finite volume schemes of arbitrary order on rectangular meshes. J. Sci. Comput. 58(2), 308–330 (2014). https://doi.org/10.1007/s10915-013-9737-5

    Article  MathSciNet  Google Scholar 

  40. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130(2), 363–393 (2015). https://doi.org/10.1007/s00211-014-0664-7

    Article  MathSciNet  Google Scholar 

  41. Zheng, N., Cai, X., Qiu, J.M., Qiu, J.: A conservative semi-Lagrangian hybrid Hermite Weno scheme for linear transport equations and the nonlinear Vlasov–Poisson system. SIAM J. Sci. Comput. 43(5), A3580–A3606 (2021). https://doi.org/10.1137/20M1363273

    Article  MathSciNet  Google Scholar 

  42. Zheng, N., Cai, X., Qiu, J.M., Qiu, J.: A fourth-order conservative semi-Lagrangian finite volume Weno scheme without operator splitting for kinetic and fluid simulations. Comput. Methods Appl. Mech. Eng. 395, 114973 (2022). https://doi.org/10.1016/j.cma.2022.114973

    Article  ADS  MathSciNet  Google Scholar 

  43. Zhou, Y., Wu, J.: A unified analysis of a class of quadratic finite volume element schemes on triangular meshes. Adv. Comput. Math. 46(5), 71 (2020). https://doi.org/10.1007/s10444-020-09809-8

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang.

Ethics declarations

Conflict of interest

The authors have no additional relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of the article was revised: Table 1 was processed incorrectly. It has been corrected.

This work is supported in part by the National Natural Science Foundation of China (Nos. 12371396, 11701211) and the National Key Research and Development Program of China (Nos. 2020YFA0713602, 2022YFB3707301).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, X. The Hermite Finite Volume Method with Global Conservation Law. J Sci Comput 98, 17 (2024). https://doi.org/10.1007/s10915-023-02407-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02407-y

Keywords

Mathematics Subject Classification

Navigation