Skip to main content
Log in

Higher Order Time Discretization Method for the Stochastic Stokes Equations with Multiplicative Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new approach for the time-discretization of the incompressible stochastic Stokes equations with multiplicative noise. Our new strategy is based on the classical Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of nearly 1 for both velocity and pressure approximations. The proof is based on a new Hölder continuity estimate of the velocity solution. While the errors of the velocity approximation are estimated in the standard \(L^2\)- and \(H^1\)-norms, the pressure errors are carefully analyzed in a special norm because of the low regularity of the pressure solution. In addition, a new interpretation of the pressure solution, which is very useful in computation, is also introduced. Numerical experiments are also provided to validate the error estimates and their sharpness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Bensoussan, A., Temam, R.: Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13(2), 195–222 (1973)

    Article  MATH  Google Scholar 

  2. Breit, D., Dodgson, A.: Convergence rates for the numerical approximation of the 2D stochastic Navier–Stokes equations. Numer. Math. 147(3), 553–578 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brzeźniak, Z., Carelli, E., Prohl, A.: Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33(3), 771–824 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carelli, E., Hausenblas, E., Prohl, A.: Time-splitting methods to solve the stochastic incompressible Stokes equation. SIAM J. Numer. Anal. 50(6), 2917–2939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, R.M., Wang, D., Wang, H.: Martingale solutions for the three-dimensional stochastic nonhomogeneous incompressible Navier–Stokes equations driven by Lévy processes. J. Funct. Anal. 276(7), 2007–2051 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, P.-L.: Stochastic Partial Differential Equations. Chapman and Hall/CRC, New York (2007)

    Book  MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  9. Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel. chapitres v à viii: Théorie des martingales. ed. Ent. Ref. Actualites scientifiques et industrielles. 1385

  10. Feng, X., Li, Y., Zhang, Y.: A fully discrete mixed finite element method for the stochastic Cahn–Hilliard equation with gradient-type multiplicative noise. J. Sci. Comput. 83, 1–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, X., Prohl, A., Vo, L.: Optimally convergent mixed finite element methods for the stochastic Stokes equations. IMA J. Numer. Anal. 41(3), 2280–2310 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, X., Qiu, H.: Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. J. Sci. Comput. 88(2), 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, X., Vo, L.: Analysis of Chorin-type projection methods for the stochastic Stokes equations with general multiplicative noise. Stoch. Partial Differ. Equ. Anal. Comput. 11(6), 1–38 (2022)

    MathSciNet  Google Scholar 

  14. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (2012)

    MATH  Google Scholar 

  16. Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier–Stokes equations. Appl. Math. Optim. 48(3), 195–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Menaldi, J.-L., Sritharan, S.S.: Stochastic 2-d Navier–Stokes equation. Appl. Math. Optim. 46(1), 31–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mil’shtejn, G.. N..: Approximate integration of stochastic differential equations. Theory Probab. Appl. 19(3), 557–562 (1975). https://doi.org/10.1137/1119062

    Article  MATH  Google Scholar 

  19. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  20. Vo, L.: High moment and pathwise error estimates for fully discrete mixed finite element approximations of the stochastic Stokes equations with multiplicative noises. arXiv preprint arXiv:2106.04534 (2021)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liet Vo.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, L. Higher Order Time Discretization Method for the Stochastic Stokes Equations with Multiplicative Noise. J Sci Comput 97, 59 (2023). https://doi.org/10.1007/s10915-023-02375-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02375-3

Keywords

Mathematics Subject Classification

Navigation