Abstract
The subdiffusion equations with a Caputo fractional derivative of order \(\alpha \in (0,1)\) arise in a wide variety of practical problems, which describe the transport processes, in the force-free limit, slower than Brownian diffusion. In this work, we derive the correction schemes of the Lagrange interpolation with degree k (\(k\le 6\)) convolution quadrature, called \(L_k\) approximation, for the subdiffusion. The key step of designing correction algorithm is to calculate the explicit form of the coefficients of \(L_k\) approximation by the polylogarithm function or Bose-Einstein integral. To construct a \(\tau _8\) approximation of Bose-Einstein integral, the desired \((k+1-\alpha )\)th-order convergence rate can be proved for the correction \(L_k\) scheme with nonsmooth data, which is higher than kth-order BDFk method in [Jin, Li, and Zhou, SIAM J. Sci. Comput., 39 (2017), A3129–A3152; Shi and Chen, J. Sci. Comput., (2020) 85:28]. The numerical experiments with spectral method are given to illustrate theoretical results.






Similar content being viewed by others
Data Availability
Not applicable.
References
Akrivis, G., Chen, M.H., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. 59, 2449–2472 (2021)
Appel, K.I.: The use of the computer in the proof of the four color theorem. Proc. Amer. Philos. Soc. 128, 35–39 (1984)
Bhagat, V., Bhattacharya, R., Roy, D.: On the evaluation of generalized Bose-Einstein and Fermi-Dirac integrals. Comput. Phys. Comm. 155, 7–20 (2003)
Cao, J.X., Li, C.P., Chen, Y.Q.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18, 735–761 (2015)
Chen, M.H., Jiang, S.Z., Bu, W.P.: Two \(L1\) schemes on graded meshes for fractional Feynman-Kac equation. J. Sci. Comput. 88, 58 (2021)
Chen, M.H., Deng, W.H.: Discretized fractional substantial calculus. ESAIM: Math. Model. Numer. Anal. 49, 373–394 (2015)
Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)
Flajolet, P.: Singularity analysis and asymptotics of Bernoulli sums. Theoret. Comput. Sci. 215, 371–381 (1999)
Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)
Jin, B., Li, B.Y., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)
Jin, B., Lazarov, R., Zhou, Z.: An analysis of the \(L1\) scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)
Kopteva, N.: Error analysis of an \(L2\)-type method on graded meshes for a fractional-order parabolic problem. Math. Comp. 90, 19–40 (2021)
LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)
Li, H.F., Cao, J.X., Li, C.P.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III). J. Comput. Appl. Math. 299, 159–175 (2016)
Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)
Lubich, Ch., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)
Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)
Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms. Analysis and Applications. Springer-Verlag, Berlin (2011)
Shi, J.K., Chen, M.H.: Correction of high-order BDF convolution quadrature for fractional Feynman-Kac equation with Lévy flight. J. Sci. Comput. 85, 28 (2020)
Stynes, M., O’riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)
Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, New York (2006)
Wang, Y.Y., Yan, Y.B., Yang, Y.: Two high-order time discretization schemes for subdiffusion problems with nonsmooth data. Fract. Calc. Appl. Anal. 23, 1349–1380 (2020)
Yan, Y.B., Khan, M., Ford, N.J.: An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)
Funding
This work was supported by NSFC 11601206, 11901266 and Natural Science Foundation of Gansu Province (No. 21JR7RA253).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
The coefficients \(\omega ^{(k)}_{j}\) of \(L_k\) approximation in (2.4) are given explicitly by the following
-
\(L_1\) approximation
-
\(L_2\) approximation
$$\begin{aligned} \omega ^{(2)}_{0}=&\frac{1}{\varGamma (3-\alpha )} +\frac{1}{2} \frac{1}{\varGamma (2-\alpha )}, \qquad \omega ^{(2)}_{1}= \frac{\left( 2^{2-\alpha }-3\right) }{\varGamma (3-\alpha )} +\frac{1}{2}\frac{\left( 2^{1-\alpha }-3\right) }{\varGamma (2-\alpha )},\\ \omega ^{(2)}_{j} =&\frac{\left( (j+1)^{2-\alpha }-3j^{2-\alpha }+3(j-1)^{2-\alpha }-(j-2)^{2-\alpha }\right) }{\varGamma (3-\alpha )} \\&+\frac{1}{2}\frac{\left( (j+1)^{1-\alpha }-3j^{1-\alpha }+3(j-1)^{1-\alpha }-(j-2)^{1-\alpha }\right) }{\varGamma (2-\alpha )},~~j\ge 2. \end{aligned}$$ -
\(L_3\) approximation
$$\begin{aligned} \omega ^{(3)}_{0}=&\frac{1}{\varGamma (4-\alpha )} + \frac{1}{\varGamma (3-\alpha )}+\frac{1}{3}\frac{1}{\varGamma (2-\alpha )}, \\ \omega ^{(3)}_{1}=&\frac{ 2^{3-\alpha }-4 }{\varGamma (4-\alpha )} + \frac{ 2^{2-\alpha }-4 }{\varGamma (3-\alpha )} +\frac{1}{3}\frac{ 2^{1-\alpha }-4 }{\varGamma (2-\alpha )},\\ \omega ^{(3)}_{2}=&\frac{ 3^{3-\alpha }-4\times 2^{3-\alpha }+6 }{\varGamma (4-\alpha )} + \frac{ 3^{2-\alpha }-4\times 2^{2-\alpha }+6 }{\varGamma (3-\alpha )} +\frac{1}{3}\frac{ 3^{1-\alpha }-4\times 2^{1-\alpha }+6 }{\varGamma (2-\alpha )},\\ \omega ^{(3)}_{j} =&\frac{ (j+1)^{3-\alpha }-4j^{4-\alpha }+6(j-1)^{3-\alpha }-4(j-2)^{3-\alpha } +(j-3)^{3-\alpha } }{\varGamma (4-\alpha )} \\&+ \frac{ (j+1)^{2-\alpha }-4j^{2-\alpha }+6(j-1)^{2-\alpha }-4(j-2)^{2-\alpha } +(j-3)^{2-\alpha } }{\varGamma (3-\alpha )} \\&+\frac{1}{3}\frac{ (j+1)^{1-\alpha }-4j^{1-\alpha }+6(j-1)^{1-\alpha }-4(j-2)^{1-\alpha } +(j-3)^{1-\alpha } }{\varGamma (2-\alpha )},~j\ge 3. \end{aligned}$$ -
\(L_4\) approximation
-
\(L_5\) approximation
$$\begin{aligned} \omega ^{(5)}_{0}=&\frac{1}{\varGamma (6-\alpha )} + 2 \frac{1}{\varGamma (5-\alpha )} + \frac{7}{4}\frac{1}{\varGamma (4-\alpha )} + \frac{5}{6}\frac{1}{\varGamma (3-\alpha )} + \frac{1}{5}\frac{1}{\varGamma (2-\alpha )},\\ \omega ^{(5)}_{1}=&\frac{ 2^{5-\alpha }-6 }{\varGamma (6-\alpha )} + 2\frac{ 2^{4-\alpha }-6 }{\varGamma (5-\alpha )} + \frac{7}{4}\frac{ 2^{3-\alpha }-6 }{\varGamma (4-\alpha )}+\frac{5}{6}\frac{ 2^{2-\alpha }-6 }{\varGamma (3-\alpha )} + \frac{1}{5}\frac{ 2^{1-\alpha }-6 }{\varGamma (2-\alpha )},\\ \omega ^{(5)}_{2} =&\frac{ 3^{5-\alpha }-6\times 2^{5-\alpha }+15 }{\varGamma (6-\alpha )} + 2\frac{ 3^{4-\alpha }-6\times 2^{4-\alpha }+15 }{\varGamma (5-\alpha )} +\frac{7}{4}\frac{ 3^{3-\alpha }-6\times 2^{3-\alpha }+15 }{\varGamma (4-\alpha )} \\&+\frac{5}{6}\frac{ 3^{2-\alpha }-6\times 2^{2-\alpha }+15 }{\varGamma (3-\alpha )} + \frac{1}{5}\frac{ 3^{1-\alpha }-6\times 2^{1-\alpha }+15 }{\varGamma (2-\alpha )},\\ \omega ^{(5)}_{3} =&\frac{ 4^{5-\alpha }-6\times 3^{5-\alpha }+15\times 2^{5-\alpha } -20 }{\varGamma (6-\alpha )} +2\frac{ 4^{4-\alpha }-6\times 3^{4-\alpha }+15\times 2^{4-\alpha } -20 }{\varGamma (5-\alpha )} \\&+\frac{7}{4}\frac{ 4^{3-\alpha }-6\times 3^{3-\alpha }+15\times 2^{3-\alpha }-20 }{\varGamma (4-\alpha )} +\frac{5}{6}\frac{ 4^{2-\alpha }-6\times 3^{2-\alpha }+15\times 2^{2-\alpha }-20 }{\varGamma (3-\alpha )} \\&+\frac{1}{5}\frac{ 4^{1-\alpha }-6\times 3^{1-\alpha }+15\times 2^{1-\alpha } -20 }{\varGamma (2-\alpha )},\\ \omega ^{(5)}_{4} =&\frac{5^{5-\alpha }-6\times 4^{5-\alpha }+15\times 3^{5-\alpha } -20 \times 2^{5-\alpha } +15 }{\varGamma (6-\alpha )} +2\frac{5^{4-\alpha }-6\times 4^{4-\alpha }+15\times 3^{4-\alpha } }{\varGamma (5-\alpha )} \\&+2\frac{-20 \times 2^{4-\alpha } +15}{\varGamma (5-\alpha )} +\frac{7}{4}\frac{5^{3-\alpha }-6\times 4^{3-\alpha }+15\times 3^{3-\alpha } -20 \times 2^{3-\alpha } +15 }{\varGamma (4-\alpha )} \\&+\frac{5}{6}\frac{5^{2-\alpha }-6\times 4^{2-\alpha }+15\times 3^{2-\alpha } -20 \times 2^{2-\alpha } +15}{\varGamma (3-\alpha )} \\&+\frac{1}{5}\frac{5^{1-\alpha }-6\times 4^{1-\alpha } +15\times 3^{1-\alpha } -20 \times 2^{1-\alpha } +15 }{\varGamma (2-\alpha )},\\ \omega ^{(5)}_{j} =&\frac{(j+1)^{5-\alpha }-6j^{5-\alpha }+15(j-1)^{5-\alpha } -20(j-2)^{5-\alpha } + 15(j-3)^{5-\alpha }-6(j-4)^{5-\alpha } }{\varGamma (6-\alpha )} \\&+2\frac{(j+1)^{4-\alpha }-6j^{4-\alpha }+15(j-1)^{4-\alpha } -20(j-2)^{4-\alpha }+ 15(j-3)^{4-\alpha }-6(j-4)^{4-\alpha } }{\varGamma (5-\alpha )} \\&+\frac{7}{4}\frac{(j+1)^{3-\alpha }-6j^{3-\alpha }+15(j-1)^{3-\alpha }-20(j-2)^{3-\alpha } + 15(j-3)^{3-\alpha }-6(j-4)^{3-\alpha } }{\varGamma (4-\alpha )}\\&+\frac{5}{6}\frac{(j+1)^{2-\alpha }-6j^{2-\alpha }+15(j-1)^{2-\alpha }-20(j-2)^{2-\alpha } + 15(j-3)^{2-\alpha }-6(j-4)^{2-\alpha }}{\varGamma (3-\alpha )} \\&+\frac{1}{5}\frac{(j+1)^{1-\alpha }-6j^{1-\alpha }+15(j-1)^{1-\alpha } -20(j-2)^{1-\alpha } + 15(j-3)^{1-\alpha }-6(j-4)^{1-\alpha }}{\varGamma (2-\alpha )} \\&+ \frac{(j-5)^{5-\alpha }}{\varGamma (6-\alpha )} +2\frac{(j-5)^{4-\alpha }}{\varGamma (5-\alpha )} +\frac{7}{4}\frac{(j-5)^{3-\alpha }}{\varGamma (4-\alpha )} +\frac{5}{6}\frac{(j-5)^{2-\alpha } }{\varGamma (3-\alpha )} +\frac{1}{5}\frac{(j-5)^{1-\alpha } }{\varGamma (2-\alpha )},~j\ge 5. \end{aligned}$$
-
\(L_6\) approximation
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shi, J., Chen, M., Yan, Y. et al. Correction of High-Order \(L_k\) Approximation for Subdiffusion. J Sci Comput 93, 31 (2022). https://doi.org/10.1007/s10915-022-01984-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01984-8