Skip to main content
Log in

Semi-implicit Hybrid Discrete \(\left( \text {H}^T_N\right) \) Approximation of Thermal Radiative Transfer

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing numerical solutions of the TRT equations accurately and efficiently is challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase space that includes the independent variables of time, space, and velocity. In order to reduce the dimensionality of the phase space, classical approaches such as the P\(_N\) (spherical harmonics) or the S\(_N\) (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H\(^T_N\)) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P\(_N\) and S\(_N\), and indeed reduces to each of these approximations in various limits: H\(^1_N\) \(\equiv \) P\(_N\) and H\(^T_0\) \(\equiv \) S\(_T\). We prove that H\(^T_N\) results in a system of hyperbolic partial differential equations for all \(T\ge 1\) and \(N\ge 0\). Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop an asymptotic-preserving numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. In particular, we make use of a second order explicit Runge–Kutta scheme for the streaming term and an implicit Euler scheme for the material coupling term. Furthermore, in order to solve the material energy equation implicitly after each predictor and corrector step, we linearize the temperature term using a Taylor expansion; this avoids the need for an iterative procedure, and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope limiter after each time step. Finally, we conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H\(^T_N\) ansatz and the numerical discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams, M.P., Adams, M.L., Hawkins, W.D., Smith, T., Rauchwerger, L., Amato, N.M., Bailey, T.S., Falgout, R.D., Kunen, A., Brown, P.: Provably optimal parallel transport sweeps on semi-structured grids. J. Comput. Phys. 407, 109–234 (2020)

    Article  MathSciNet  Google Scholar 

  2. Brunner, T.A., Holloway, J.P.: Two-dimensional time-dependent Riemann solvers for neutron transport. J. Comput. Phys. 210(1), 386–399 (2005)

    Article  MathSciNet  Google Scholar 

  3. Carlson, B.: Solution of the Transport Equation by the S$_N$ Method. Los Alamos National Laboratory, Santa Fe (1955)

    Google Scholar 

  4. Carlson, B.: Tables of Symmetric Equal Weight Quadrature EQN Over the Unit Sphere. Los Alamos National Laboratory, Santa Fe (1971)

    Book  Google Scholar 

  5. Cohen, A.: An algebraic approach to certain differential eigenvalue problems. Linear Algebra Appl. 240, 183–198 (1996)

    Article  MathSciNet  Google Scholar 

  6. Dubroca, B., Feugeas, J.L.: Etude théorique et numérique d’une hiérarchie de modèles aux moments pour le transfert radiatif. Comptes Rendus de l’adémie des Sciences-Series I-Mathematics 329(10), 915–920 (1999)

  7. Evans, T.M., Urbatsch, T.J., Lichtenstein, H., Morel, J.E.: A residual Monte Carlo method for discrete thermal radiative diffusion. J. Comput. Phys. 189(2), 539–556 (2003)

    Article  Google Scholar 

  8. Fan, Y.W., Li, R., Zheng, L.C.: A nonlinear moment model for radiative transfer equation in slab geometry. J. Comput. Phys. 404, 109–128 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Fleck, J.A., Jr., Cummings, J.D.: An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comput. Phys. 8(3), 313–342 (1971)

    Article  MathSciNet  Google Scholar 

  10. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods, 2nd edn. Wiley, New York (2013)

    Book  Google Scholar 

  11. Hauck, C., McClarren, R.: Positive p$_{\rm n}$ closures. SIAM J. Sci. Comput. 32(5), 2603–2626 (2010)

    Article  MathSciNet  Google Scholar 

  12. Hauck, C.D.: High-order entropy-based closures for linear transport in slab geometry. Commun. Math. Sci. 9(1), 187–205 (2011)

    Article  MathSciNet  Google Scholar 

  13. Hauck, C.D., McClarren, R.G.: Positive P$_N$ closures. SIAM J. Sci. Comput. 32(5), 2603–2626 (2010)

    Article  MathSciNet  Google Scholar 

  14. Jarrell, J., Adams, M.: Discrete-ordinates quadrature sets based on linear discontinuous finite elements. In: Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil (2011)

  15. Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35(3), 1073–1094 (1998)

    Article  MathSciNet  Google Scholar 

  16. Klar, A., Unterreiter, A.: Uniform stability of a finite difference scheme for transport equations in diffusive regimes. SIAM J. Numer. Anal. 40(3), 891–913 (2002)

    Article  MathSciNet  Google Scholar 

  17. Koch, R., Krebs, W., Wittig, S., Viskanta, R.: The discrete ordinate quadrature schemes for multidimensional radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 53(4), 353–372 (1995)

    Article  Google Scholar 

  18. Laiu, M.P., Hauck, C.D., McClarren, R.G., O’Leary, D.P., Tits, A.L.: Positive filtered P$_N$ moment closures for linear kinetic equations. SIAM J. Numer. Anal. 54(6), 3214–3238 (2016)

  19. Larsen, E., Pomraning, G., Badham, V.: Asymptotic analysis of radiative transfer equations. J. Quant. Spectrosc. Radiat. Transf. 29(4), 285–310 (1983)

    Article  Google Scholar 

  20. Lathrop, K.D.: Ray effects in discrete ordinates equations. Nucl. Sci. Eng. 32(3), 357–369 (1968)

    Article  Google Scholar 

  21. Lathrop, K.D.: Remedies for ray effects. Nucl. Sci. Eng. 45(3), 255–268 (1971)

    Article  Google Scholar 

  22. Lathrop, K.D., Carlson, B.G.: Discrete ordinates angular quadrature of the neutron transport equation. Los Alamos Scientific Laboratory Report 3186 (1965)

  23. Lau, C., Adams, M.: Discrete ordinates quadratures based on linear and quadratic discontinuous finite elements over spherical quadrilaterals. Nucl. Sci. Eng. 185(1), 36–52 (2017)

    Article  Google Scholar 

  24. Lewis, E.E., Miller, W.F.: Computational Methods of Neutron Transport. Wiley, DeKalb (1994)

    MATH  Google Scholar 

  25. Li, W., Liu, C., Zhu, Y., Zhang, J., Xu, K.: Unified gas-kinetic wave-particle methods III: multiscale photon transport. J. Comput. Phys. 408, 109–280 (2020)

    MathSciNet  Google Scholar 

  26. Lorenz, J., Schroll, H.J.: Stiff well-posedness for hyperbolic systems with large relaxation terms (linear constant-coefficient problems). Adv. Differ. Equ. 2(4), 643–666 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Lowrie, R.B.: A comparison of implicit time integration methods for nonlinear relaxation and diffusion. J. Comput. Phys. 196(2), 566–590 (2004)

    Article  MathSciNet  Google Scholar 

  28. McClarren, R.G., Evans, T.M., Lowrie, R.B., Densmore, J.D.: Semi-implicit time integration for P$_N$ thermal radiative transfer. J. Comput. Phys. 227(16), 7561–7586 (2008)

    Article  MathSciNet  Google Scholar 

  29. McClarren, R.G., Holloway, J.P., Brunner, T.A.: On solutions to the pn equations for thermal radiative transfer. J. Comput. Phys. 227(5), 2864–2885 (2008)

    Article  MathSciNet  Google Scholar 

  30. Mcclarren, R.G., Lowrie, R.B.: The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws. J. Comput. Phys. 227(23), 9711–9726 (2008)

    Article  MathSciNet  Google Scholar 

  31. McClarren, R.G., Urbatsch, T.J.: A modified implicit Monte Carlo method for time-dependent radiative transfer with adaptive material coupling. J. Comput. Phys. 228(16), 5669–5686 (2009)

    Article  MathSciNet  Google Scholar 

  32. Olson, G.: Second-order time evolution of PN equations for radiation transport. J. Comput. Phys. 228(8), 3072–3083 (2009)

    Article  MathSciNet  Google Scholar 

  33. Olson, G.L., Auer, L.H., Hall, M.L.: Diffusion, p$_1$, and other approximate forms of radiation transport. J. Quant. Spectrosc. Radiat. Transf. 64(6), 619–634 (2000)

    Article  Google Scholar 

  34. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall Series in Computational Mathematics, vol. 61, No. 7, pp. 277–348 (1981)

  35. Pomraning, G.C.: Variational boundary conditions for the spherical harmonics approximation to the neutron transport equation. Ann. Phys. 27, 193–215 (1964)

    Article  MathSciNet  Google Scholar 

  36. Pomraning, G.C.: The Equations of Radiation Hydrodynamics. Pergamon Press, Oxford (1973)

    Google Scholar 

  37. Shin, M.: Hybrid discrete (H$^T_N$) approximations to the equation of radiative transfer. Ph.D. thesis, Iowa State University, Ames (2019)

  38. Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer, vol. 3. Hemisphere Publishing Corp., Washington (1972)

    Google Scholar 

  39. Su, B., Olson, G.L.: An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium. Ann. Nucl. Energy 24(13), 1035–1055 (1997)

    Article  Google Scholar 

  40. Thurgood, C.P., Pollard, A., Becker, H.A.: The T$_N$ quadrature set for the discrete ordinates method. J. Heat Transf. 117(4), 1068–1070 (1995)

    Article  Google Scholar 

  41. Vikas, V., Hauck, C., Wang, Z., Fox, R.: Radiation transport modeling using extended quadrature method of moments. J. Comput. Phys. 246(1), 221–241 (2013)

    Article  MathSciNet  Google Scholar 

  42. Wikipedia: Gaussian quadrature. https://en.wikipedia.org/wiki/Gaussian_quadrature (2021)

  43. Wollaber, A.B.: Four decades of implicit Monte Carlo. J. Comput. Theor. Transp. 45(1–2), 1–70 (2016)

    Article  MathSciNet  Google Scholar 

  44. Zheng, W., McClarren, R.G.: Moment closures based on minimizing the residual of the PN angular expansion in radiation transport. J. Comput. Phys. 314, 682–699 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

JAR was supported in part by NSF Grants DMS–1620128 and DMS–2012699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minwoo Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClarren, R.G., Rossmanith, J.A. & Shin, M. Semi-implicit Hybrid Discrete \(\left( \text {H}^T_N\right) \) Approximation of Thermal Radiative Transfer. J Sci Comput 90, 2 (2022). https://doi.org/10.1007/s10915-021-01686-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01686-7

Keywords

Mathematics Subject Classification

Navigation