Skip to main content
Log in

Numerical Approximation of the Two-Component PFC Models for Binary Colloidal Crystals: Efficient, Decoupled, and Second-Order Unconditionally Energy Stable Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider numerical approximations for the two-component PFC models for binary colloidal crystals. In addition to the Cahn–Hilliard type two-component PFC model that is commonly used for considering mass conservation, we also derived a new Allen–Cahn type two-component PFC model by using the \(L^2\)-gradient flow and add two nonlocal Lagrange multipliers to the system to conserve the mass for each component. For these two types of two-component PFC models, the stabilized scalar auxiliary variable (SAV) approach is adopted to develop efficient, decoupled, second-order accurate, and linear numerical schemes, where a new SAV is introduced to reformulate the models, and two extra linear stabilization terms are added to improve the stability and keep the required accuracy thus allowing large time steps. These schemes are unconditionally energy stable, mass conservative and require solving only four linear equations with constant coefficients at each time step. Numerical examples are performed to demonstrate the accuracy and energy stability of the proposed schemes, and numerous 2D and 3D simulations are also presented to show a variety of complex binary ordered patterns of phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data/code and material

Date will be made available on reasonable request.

References

  1. Alster, E., Elder, K.R., Hoyt, J.J., Voorhees, P.W.: Phase-field-crystal model for ordered crystals. Phys. Rev. E 95, 022105 (2017)

    Article  MathSciNet  Google Scholar 

  2. Baskaran, A., Hu, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodnarchuk, M.I., Kovalenko, M.V., Heiss, W., Talapin, D.V.: Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J. Am. Chem. Soc. 132(34), 11967–11977 (2010)

    Article  Google Scholar 

  5. Cai, Z., Liu, Y.J., Lu, X., Teng, J.: Fabrication of well-ordered binary colloidal crystals with extended size ratios for broadband reflectance. ACS Appl. Mater. Interf. 6(13), 10265–10273 (2014)

    Article  Google Scholar 

  6. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 113070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Q., Shen, J.: Global constraints preserving scalar auxiliary variable schemes for gradient flows. SIAM J. Sci. Comput. 42(4), A2489–A2513 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Abbaszadeh, M.: The meshless local collocation method for solving multi-dimensional Cahn–Hilliard, Swift–Hohenberg and phase field crystal equations. Eng. Anal. Bound. Elem. 78, 49–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)

    Article  Google Scholar 

  10. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)

    Article  Google Scholar 

  11. Elder, K.R., Provatas, N., Berry, J., Stefanovic, P., Grant, M.: Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75, 064107 (2007)

    Article  Google Scholar 

  12. Eldridge, M., Madden, P., Frenkel, D.: Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365(6441), 35 (1993)

    Article  Google Scholar 

  13. Evers, W.H., Nijs, B.D., Filion, L., Castillo, S., Dijkstra, M., Vanmaekelbergh, D.: Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett. 10(10), 4235–4241 (2010)

    Article  Google Scholar 

  14. Fallah, V., Stolle, J., Ofori-Opoku, N., Esmaeili, S., Provatas, N.: Phase-field crystal modeling of early stage clustering and precipitation in metal alloys. Phys. Rev. B 86, 134112 (2012)

    Article  Google Scholar 

  15. Ganai, N., Saha, A., Sengupta, S.: Colloidal particles in a drying suspension: a phase field crystal approach. Eur. Phys. J. E 36(8), 90 (2013)

    Article  Google Scholar 

  16. Glasner, K., Orizaga, S.: Improving the accuracy of convexity splitting methods for gradient flow equations. J. Comput. Phys. 315, 52–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomez, H., Nogueira, X.: An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Eng. 249, 52–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, R., Xu, Y.: Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation. SIAM J. Sci. Comput. 38(1), A105–A127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heatley, K.L., Ma, F., Wu, N.: Colloidal molecules assembled from binary spheres under an ac electric field. Soft Matter 13(2), 436–444 (2017)

    Article  Google Scholar 

  20. Huang, Z.F., Elder, K.R.: Mesoscopic and microscopic modeling of island formation in strained film epitaxy. Phys. Rev. Lett. 101, 158701 (2008)

    Article  Google Scholar 

  21. Huang, Z.F., Elder, K.R.: Morphological instability, evolution, and scaling in strained epitaxial films: an amplitude-equation analysis of the phase-field-crystal model. Phys. Rev. B 81, 165421 (2010)

    Article  Google Scholar 

  22. Huang, Z.F., Elder, K.R., Provatas, N.: Phase-field-crystal dynamics for binary systems: derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures. Phys. Rev. E 82, 021605 (2010)

    Article  Google Scholar 

  23. Jiang, K., Si, W.: Stability of three-dimensional icosahedral quasicrystals in multi-component systems. Philos. Mag. 100(1), 84–109 (2020)

    Article  Google Scholar 

  24. Jiang, K., Tong, J., Zhang, P.: Stability of soft quasicrystals in a coupled-mode Swift-Hohenberg model for three-component systems. Commun. Comput. Phys. 19(3), 559–581 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khalil, K.S., Sagastegui, A., Li, Y., Tahir, M.A., Socolar, J.E., Wiley, B.J., Yellen, B.B.: Binary colloidal structures assembled through ising interactions. Nat. Commun. 3, 794 (2012)

    Article  Google Scholar 

  26. Kiely, C., Fink, J., Brust, M., Bethell, D., Schiffrin, D.: Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396(6710), 444 (1998)

    Article  Google Scholar 

  27. Kim, M.H., Im, S.H., Park, O.O.: Fabrication and structural analysis of binary colloidal crystals with two-dimensional superlattices. Adv. Mater. 17(20), 2501–2505 (2005)

    Article  Google Scholar 

  28. Kostiainen, M.A., Hiekkataipale, P., Laiho, A., Lemieux, V., Seitsonen, J., Ruokolainen, J., Ceci, P.: Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat. Nanotechnol. 8(1), 52 (2013)

    Article  Google Scholar 

  29. Lee, H.G., Shin, J., Lee, J.Y.: First and second order operator splitting methods for the phase field crystal equation. J. Comput. Phys. 299, 82–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Q., Li, X., Yang, X., Mei, L.: Highly efficient and linear numerical schemes with unconditional energy stability for the anisotropic phase-field crystal model. J. Comput. Appl. Math. 383, 113122 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Q., Mei, L.: Efficient, decoupled, and second-order unconditionally energy stable numerical schemes for the coupled Cahn–Hilliard system in copolymer/homopolymer mixtures. Comput. Phys. Commun. 260, 107290 (2021)

    Article  MathSciNet  Google Scholar 

  33. Li, Q., Mei, L., Yang, X., Li, Y.: Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 45(3), 1551–1580 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, J., Cai, Y., Deng, Y., Sun, Z., Gu, D., Tu, B., Zhao, D.: Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and its application for effective removal of microcystin. Microporous Mesoporous Mater. 130(1), 26–31 (2010)

    Article  Google Scholar 

  35. Mu\(\check{s}\)evi\(\check{c}\), I.: Liquid Crystal Colloids. Springer, Heidelberg (2017)

  36. Ognysta, U., Nych, A., Nazarenko, V., Skarabot, M., Musevic, I.: Design of 2D binary colloidal crystals in a nematic liquid crystal. Langmuir 25(20), 12092–12100 (2009)

    Article  Google Scholar 

  37. Peng, Y., Lu, Y., Chen, Z., Yu, G.: A binary phase field crystal study for phase segregation of liquid phase heteroepitaxial growth. Comput. Mater. Sci. 123, 65–69 (2016)

    Article  Google Scholar 

  38. Petris, S., Stankovich, J., Chan, D., Ottewill, R.: Modeling the structure of charged binary colloidal dispersions. Langmuir 19(4), 1121–1126 (2003)

    Article  Google Scholar 

  39. Provatas, N., Dantzig, J., Athreya, B., Chan, P., Stefanovic, P., Goldenfeld, N., Elder, K.: Using the phase-field crystal method in the multi-scale modeling of microstructure evolution. JOM 59(7), 83–90 (2007)

    Article  Google Scholar 

  40. Redl, F.X., Cho, K.S., Murray, C.B., O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423(6943), 968 (2003)

  41. Rubinstein, J., Sternberg, P.: Nonlocal reaction–diffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Multiscale Modeling and Analysis for Materials Simulation, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 22, pp. 147–195. World Scientific, Hackensack (2012)

  43. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S., Murray, C.B.: Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55 (2006)

  47. Shin, J., Lee, H.G., Lee, J.Y.: First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 327, 519–542 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stirner, T., Sun, J.: Molecular dynamics simulation of the structural configuration of binary colloidal monolayers. Langmuir 21(14), 6636–6641 (2005)

    Article  Google Scholar 

  49. Stolle, J., Provatas, N.: Characterizing solute segregation and grain boundary energy in binary alloy phase field crystal models. Comput. Mater. Sci. 81, 493–502 (2014)

    Article  Google Scholar 

  50. Stolle, J.F.: Phase field crystal studies of strain-mediated effects in the thermodynamics and kinetics of interfaces. Ph.D. thesis, McMaster University, Hamilton (2014)

  51. Taha, D., Dlamini, S.R., Mkhonta, S.K., Elder, K.R., Huang, Z.F.: Phase ordering, transformation, and grain growth of two-dimensional binary colloidal crystals: a phase field crystal modeling. Phys. Rev. Mater. 3, 095603 (2019)

    Article  Google Scholar 

  52. Taha, D., Mkhonta, S.K., Elder, K.R., Huang, Z.F.: Grain boundary structures and collective dynamics of inversion domains in binary two-dimensional materials. Phys. Rev. Lett. 118, 255501 (2017)

    Article  Google Scholar 

  53. Tegze, G., Bansel, G., Tóth, G.I., Pusztai, T., Fan, Z., Gránásy, L.: Advanced operator splitting-based semi-implicit spectral method to solve the binary phase-field crystal equations with variable coefficients. J. Comput. Phys. 228(5), 1612–1623 (2009)

    Article  MATH  Google Scholar 

  54. Tegze, G., Gránásy, L., Tóth, G.I., Douglas, J.F., Pusztai, T.: Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering. Soft Matter 7(5), 1789–1799 (2011)

    Article  Google Scholar 

  55. van Teeffelen, S., Backofen, R., Voigt, A., Löwen, H.: Derivation of the phase-field-crystal model for colloidal solidification. Phys. Rev. E 79, 051404 (2009)

    Article  Google Scholar 

  56. Wan, Y., Cai, Z., Xia, L., Wang, L., Li, Y., Li, Q., Zhao, X.: Simulation and fabrication of binary colloidal photonic crystals and their inverse structures. Mater. Lett. 63(24–25), 2078–2081 (2009)

    Article  Google Scholar 

  57. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, P.Y., Pingle, H., Koegler, P., Thissen, H., Kingshott, P.: Self-assembled binary colloidal crystal monolayers as cell culture substrates. J. Mater. Chem. B 3(12), 2545–2552 (2015)

    Article  Google Scholar 

  59. Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yang, Y., Fu, L., Marcoux, C., Socolar, J.E., Charbonneau, P., Yellen, B.B.: Phase transformations in binary colloidal monolayers. Soft Matter 11(12), 2404–2415 (2015)

    Article  Google Scholar 

  61. Zhang, J., Yang, X.: Numerical approximations for a new \(L^2\)-gradient flow based phase field crystal model with precise nonlocal mass conservation. Comput. Phys. Commun. 243, 51–67 (2019)

    Article  MathSciNet  Google Scholar 

  62. Zhang, J., Yang, X.: On efficient numerical schemes for a two-mode phase field crystal model with face-centered-cubic (FCC) ordering structure. Appl. Numer. Math. 146, 13–37 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for careful reading, helpful comments and suggestions. The first author would like to thank Xiaofeng Yang at the University of South Carolina for the valuable discussions. Q. Li’s work is supported by the Fundamental Research Funds for the Central Universities, CHD (No. 300102121302). L. Mei’s work is supported by the Science Challenge Project (No. TZ2016002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liquan Mei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Mei, L. Numerical Approximation of the Two-Component PFC Models for Binary Colloidal Crystals: Efficient, Decoupled, and Second-Order Unconditionally Energy Stable Schemes. J Sci Comput 88, 60 (2021). https://doi.org/10.1007/s10915-021-01564-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01564-2

Keywords

Mathematics Subject Classification

Navigation