Skip to main content
Log in

A First-Order Image Restoration Model that Promotes Image Contrast Preservation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel first-order variational model for image restoration. The main feature of this model lies in the fact that it helps preserve image contrasts during the image restoration process. To achieve this, we design a new regularizer that presents a lower growth rate than any power function with a positive exponent for large image gradient. Augmented Lagrangian method is employed to minimize this variational model and convergence analysis is established for the proposed algorithm. Numerical experiments are presented to demonstrate the features of the proposed model and also show the efficiency of the proposed numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Aubert, G., Vese, L.: A variational method in image recovery. SIAM J. Numer. Anal. 34, 1948–1979 (1997)

    Article  MathSciNet  Google Scholar 

  2. Brito-Loeza, C., Chen, K.: Multigrid algorithm for high order denoising. SIAM J. Imaging Sci. 3, 363–389 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bae, E., Tai, X.C., Zhu, W.: Augmented Lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Probl. Imag. 11, 1–23 (2017)

    Article  MathSciNet  Google Scholar 

  4. Beck, A.: First-Order Methods in Optimization, vol. 25. SIAM (2017)

  5. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \({\mathbb{R}}^{n}\). J. Differ. Equ. 184, 475–525 (2002)

    Article  Google Scholar 

  6. Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Process. 12, 882–889 (2003)

    Article  Google Scholar 

  7. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chang, Q.S., Che, Z.Y.: An adaptive algorithm for TV-based model of three norms \(L_{q} (q=\frac{1}{2},1,2)\) in image restoration. Appl. Math. Comput. 329, 251–265 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  10. Chan, T., Esedoglu, S.: Aspects of total variation regularized \(L^{1}\) function approximation. SIAM J. Appl. Math. 65, 1817–1837 (2005)

    Article  MathSciNet  Google Scholar 

  11. Chan, T., Esedoglu, S., Park, F., Yip, M.H.: Recent developments in total variation image restoration. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision. Springer, New York (2005)

    Google Scholar 

  12. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  Google Scholar 

  13. Chan, T., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62, 1019–1043 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22, 503–516 (2000)

    Article  MathSciNet  Google Scholar 

  15. Chan, T., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  16. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  17. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  18. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)

    Article  Google Scholar 

  19. Lysaker, M., Osher, S., Tai, X.C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13, 1345–1457 (2004)

    Article  MathSciNet  Google Scholar 

  20. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol 22, American Mathematical Society

  21. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  22. Osher, S., Burger, M., Goldfarb, D., Xu, J.J., Yin, W.T.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  23. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H^{-1} norm\). SIAM Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MathSciNet  Google Scholar 

  24. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  Google Scholar 

  25. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithm. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  26. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Prob. 19, 165–187 (2003)

    Article  MathSciNet  Google Scholar 

  27. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4, 313–344 (2011)

    Article  MathSciNet  Google Scholar 

  28. Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001)

    Article  MathSciNet  Google Scholar 

  29. Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)

    Article  MathSciNet  Google Scholar 

  30. Zhu, W., Chan, T.: Image denoising using mean curvature of image surface. SIAM J. Imaging Sci. 5, 1–32 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhu, W., Tai, X.C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Probl. Imaging 7, 1409–1432 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57, 414–438 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhu, W.: A numerical study of a mean curvature denoising model using a novel augmented Lagrangian methdod. Inverse Probl. Imaging 11, 975–996 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhu, W.: A first-order image denoising model for staircase reduction. Adv. Comput. Math. 45, 3217–3239 (2019)

    Article  MathSciNet  Google Scholar 

  35. Zhu, W.: Image denoising using Lp-norm of mean curvature of image surface. J. Sci. Comput. 83, 32 (2020). https://doi.org/10.1007/s10915-020-01216-x

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their valuable comments and suggestions, which have helped very much to improve the presentation of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Not applicable.

Code availability

On request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W. A First-Order Image Restoration Model that Promotes Image Contrast Preservation. J Sci Comput 88, 46 (2021). https://doi.org/10.1007/s10915-021-01557-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01557-1

Keywords

Navigation