Skip to main content
Log in

Energy Dissipative Local Discontinuous Galerkin Methods for Keller–Segel Chemotaxis Model

Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we apply the local discontinuous Galerkin (LDG) method to solve the classical Keller–Segel (KS) chemotaxis model. The exact solution of the KS chemotaxis model may exhibit blow-up patterns with certain initial conditions, and is not easy to approximate numerically. Moreover, it has been proved that there exists a definition of free energy of the KS system which dissipates with respect to time. We will construct a consistent numerical energy and prove the energy dissipation with the LDG discretization. Several numerical experiments in one and two space dimensions will be given. Especially, for solutions with blow-up (converge to Dirac delta functions), the densities of KS model are computed to be strictly positive in the numerical experiments and the energies are also numerically observed to be strictly positive and decreasing as are seen in the figures. Therefore, the scheme is stable for the KS model with blow-up solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 1–33 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Blanchet, A., Laurencot, P.: The Parabolic–Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in \(R^d\), \(d\ge 3\). Commun. Partial Differ. Equ. 38, 658–686 (2013)

    Article  MATH  Google Scholar 

  4. Blanchet, A., Carrillo, J., Kinderlehrer, D., Kowalczyk, M., Laurencot, P., Lisini, S.: A hybrid variational principle for the Keller–Segel system in \(R^2\). ESAIM:M2AN 49, 1553–1576 (2015)

    Article  MATH  Google Scholar 

  5. Calvez, V., Corrias, L.: The parabolic–parabolic Keller–Segel model in \(R^2\). Commun. Math. Sci. 6, 417–447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Childress, S., Percus, J.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cong, W., Liu, J.-G.: Uniform \(L^\infty \) boundedness for a degenerate parabolic–parabolic Keller–Segel model. Discrete Contin. Dyn. Syst. Ser. B 22, 307–338 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Epshteyn, Y.: Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. J. Comput. Appl. Math. 224, 168–181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Epshteyn, Y.: Upwind-difference potentials method for Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47, 368–408 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Fatkullin, I.: A study of blow-ups in the Keller–Segel model of chemotaxis. Nonlinearity 26, 81–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gajewski, H., Zacharias, K.: Global behaviour of a reaction–diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, L., Yang, Y.: Positivity-preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions. J. Comput. Phys. 289, 181–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hakovec, J., Schmeiser, C.: Stochastic particle approximation for measure valued solutions of the 2D Keller–Segel system. J. Stat. Phys. 135, 133–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Herrero, M.A., Medina, E., Velázquez, J.J.L.: Finite-time aggregation into a single point in a reaction–diffusion system. Nonlinearity 10, 1739–1754 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Herrero, M.A., Velazquez, J.J.L.: Singularity patterns in a chemotaxis model. Math. Annu. 306, 583–623 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horstman, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)

    Google Scholar 

  27. Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69 (2004)

    MATH  Google Scholar 

  28. Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. Discrete Contin. Dyn. Syst. Ser. B 17, 2569–2596 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Keller, E.F., Segel, L.A.: Initiation on slime mold aggregation viewed as instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  30. Li, X., Shu, C.-W., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, J.-G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Math. Comput. 87, 1165–1189 (2018)

    Article  MATH  Google Scholar 

  32. Liu, J.-G., Wang, J.: Refined hyper-contractivity and uniqueness for the Keller–Segel equations. Appl. Math. Lett. 52, 212–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marrocco, A.: 2D simulation of chemotaxis bacteria aggregation. ESAIM Math. Model. Numer. Anal. 37, 617–630 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 3, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Nakaguchi, E., Yagi, Y.: Fully discrete approximation by Galerkin Runge–Kutta methods for quasilinear parabolic systems. Hokkaido Math. J. 31, 385–429 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Patlak, C.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM (1973)

  38. Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pure Appl. Anal. 11, 339–364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tyson, R., Stern, L.J., LeVeque, R.J.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, Y., Shu, C.-W.: Discontinuous Galerkin method for hyperbolic equations involving \(\delta \)-singularities: negative-order norm error estimates and applications. Numer. Math. 124, 753–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, Y., Wei, D., Shu, C.-W.: Discontinuous Galerkin method for Krause’s consensus models and pressureless Euler equations. J. Comput. Phys. 252, 109–127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao, X., Yang, Y., Syler, C.: A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations. J. Comput. Phys. 278, 400–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjie Helen Li.

Additional information

The research of Li Guo was supported by the National Natural Science Foundation of China under the Grant 11601536. The research of Xingjie Helen Li was supported by the Simons Foundation Collaboration Grant: Award ID: 426935. The research of Yang Yang was supported by the NSF Grant DMS-1818467.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, X.H. & Yang, Y. Energy Dissipative Local Discontinuous Galerkin Methods for Keller–Segel Chemotaxis Model. J Sci Comput 78, 1387–1404 (2019). https://doi.org/10.1007/s10915-018-0813-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0813-8

Keywords

Navigation