Skip to main content
Log in

Solving 1D Conservation Laws Using Pontryagin’s Minimum Principle

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper discusses a connection between scalar convex conservation laws and Pontryagin’s minimum principle. For flux functions for which an associated optimal control problem can be found, a minimum value solution of the conservation law is proposed. For scalar space-independent convex conservation laws such a control problem exists and the minimum value solution of the conservation law is equivalent to the entropy solution. This can be seen as a generalization of the Lax–Oleinik formula to convex (not necessarily uniformly convex) flux functions. Using Pontryagin’s minimum principle, an algorithm for finding the minimum value solution pointwise of scalar convex conservation laws is given. Numerical examples of approximating the solution of both space-dependent and space-independent conservation laws are provided to demonstrate the accuracy and applicability of the proposed algorithm. Furthermore, a MATLAB routine using Chebfun is provided (along with demonstration code on how to use it) to approximately solve scalar convex conservation laws with space-independent flux functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Chebfun is a MATLAB [27] package that allows symbolic-like manipulation of functions at numerics speed using Chebyshev and Fourier series [3].

  2. Chebfun with a capital C is the name of the software package, chebfun with a lowercase c is a single variable function defined on an interval created with the package [3].

  3. More specifically, we used Clawpack v5.3.1-11-geb31727 from https://github.com/clawpack/clawpack with the Chapter 11 examples in the git repository https://github.com/clawpack/apps (git commit ba557b49852377c05192d48289b3fbc8fea0f52e).

References

  1. Birkisson, A., Driscoll, T.A.: Automatic Fréchet differentiation for the numerical solution of boundary-value problems. ACM Trans. Math. Softw. 38(4), 26:1–26:29 (2012). doi:10.1145/2331130.2331134

    Article  Google Scholar 

  2. Boyd, J.P.: Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding. SIAM J. Numer. Anal. 40(5), 1666–1682 (2002). doi:10.1137/s0036142901398325

    Article  MathSciNet  MATH  Google Scholar 

  3. Chebfun guide. Pafnuty Publications, Oxford (2014). http://www.chebfun.org/docs/guide/

  4. Chow, Y.T., Darbon, J., Osher, S., Yin, W.: Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton–Jacobi Equations, Projections and Differential Games. Tech. Rep. UCLA CAM 16-27, University of California, Los Angeles, Department of Mathematics, Group in Computational Applied Mathematics (2016). ftp://ftp.math.ucla.edu/pub/camreport/cam16-27. (revised August 2016)

  5. Clawpack Development Team: Clawpack Software, Version 5.3.1 (2016). http://www.clawpack.org

  6. Corrias, L., Falcone, M., Natalini, R.: Numerical schemes for conservation laws via Hamilton-Jacobi equations. Math. Comput. 64(210), 555 (1995). doi:10.1090/s0025-5718-1995-1265013-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften, 3 edn. Springer, Berlin (2010). doi:10.1007/978-3-642-04048-1

  8. Daganzo, C.F.: A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transp. Res. Part B: Methodol. 39(2), 187–196 (2005). doi:10.1016/j.trb.2004.04.003

    Article  Google Scholar 

  9. Darbon, J., Osher, S.: Algorithms for Overcoming the Curse of Dimensionality for Certain Hamilton–Jacobi Equations Arising in Control Theory and Elsewhere. ArXiv e-prints (arXiv:1605.01799) (2016)

  10. Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (2010). doi:10.1090/gsm/019

    Book  MATH  Google Scholar 

  11. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math. 12(1), 61–68 (1961). doi:10.1093/qmath/12.1.61

    Article  MathSciNet  MATH  Google Scholar 

  12. Kang, W., Wilcox, L.: A causality free computational method for HJB equations with application to rigid body satellites. In: AIAA Guidance, Navigation, and Control Conference, AIAA 2015-2009. American Institute of Aeronautics and Astronautics (2015). doi:10.2514/6.2015-2009

  13. Kang, W., Wilcox, L.C.: Mitigating the Curse of Dimensionality: Sparse Grid Characteristics Method for Optimal Feedback Control and HJB Equations. ArXiv e-prints arXiv:1507.04769 (2015)

  14. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Soc. Ind. Appl. Math. (1973). doi:10.1137/1.9781611970562

  15. LeVeque, R.J.: Numerical Methods for Conservation Laws. Springer, Berlin (1992). doi:10.1007/978-3-0348-8629-1

    Book  MATH  Google Scholar 

  16. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). doi:10.1017/cbo9780511791253

    Book  MATH  Google Scholar 

  17. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A: Math. Phys. Eng. Sci. 229(1178), 317–0345 (1955). doi:10.1098/rspa.1955.0089

    Article  MathSciNet  MATH  Google Scholar 

  18. Luke, J.C.: Mathematical models for landform evolution. J. Geophys. Res. 77(14), 2460–2464 (1972). doi:10.1029/jb077i014p02460

    Article  Google Scholar 

  19. Newell, G.F.: A simplified theory of kinematic waves in highway traffic, part I: general theory. Transp. Res. Part B: Methodol. 27(4), 281–287 (1993). doi:10.1016/0191-2615(93)90038-c

    Article  Google Scholar 

  20. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003). doi:10.1007/978-0-387-22746-7

    Book  MATH  Google Scholar 

  21. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). doi:10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991). doi:10.1137/0728049

    Article  MathSciNet  MATH  Google Scholar 

  23. Pachón, R., Platte, R.B., Trefethen, L.N.: Piecewise-smooth chebfuns. IMA J. Numer. Anal. 30(4), 898–916 (2009). doi:10.1093/imanum/drp008

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, J.M., Shu, C.W.: Convergence of Godunov-type schemes for scalar conservation laws under large time steps. SIAM J. Numer. Anal. 46(5), 2211–2237 (2008). doi:10.1137/060657911

    Article  MathSciNet  MATH  Google Scholar 

  25. Richards, P.I.: Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956). doi:10.1287/opre.4.1.42

    Article  MathSciNet  Google Scholar 

  26. Specht, W.: Die lage der nullstellen eines polynoms. III. Math. Nachr. 16(5–6), 369–389 (1957). doi:10.1002/mana.19570160509

  27. The MathWorks Inc: MATLAB R2014b. Natick, MA, USA (2014)

  28. Trefethen, L.N.: Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2012). http://www.chebfun.org/ATAP/

  29. Wright, G.B., Javed, M., Montanelli, H., Trefethen, L.N.: Extension of Chebfun to periodic functions. SIAM J. Sci. Comput. 37(5), C554–C573 (2015). doi:10.1137/141001007

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, P., Liu, R.X.: Hyperbolic conservation laws with space-dependent fluxes: II. Gen. Study Numer. Fluxes 176(1), 105–129 (2005). doi:10.1016/j.cam.2004.07.005

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by AFOSR, NRL, and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C. Wilcox.

Appendix: Example Using Implementation 1

Appendix: Example Using Implementation 1

As an example of using Implementation 1, we present the code used in Example 1 to generate Fig. 1.

figure f

Here we give the point-wise solver to to generate polynomial approximations of the solution, , for various time instances, .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Wilcox, L.C. Solving 1D Conservation Laws Using Pontryagin’s Minimum Principle. J Sci Comput 71, 144–165 (2017). https://doi.org/10.1007/s10915-016-0294-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0294-6

Keywords

Navigation