Skip to main content
Log in

Decoupled Energy Stable Schemes for a Phase Field Model of Three-Phase Incompressible Viscous Fluid Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a numerical approximation for a hydrodynamic phase field model of three immiscible, incompressible viscous fluid phases. The model is derived from a generalized Onsager principle following an energetic variational formulation and is consisted of the momentum transport equation and coupled phase transport equations. It conserves the volume of each phase and warrants the total energy dissipation in time. Its numerical approximation is given by a set of easy-to-implement, semi-discrete, linear, decoupled elliptic equations at each time step, which can be solved efficiently using fast solvers. We prove that the scheme is energy stable. Mesh refinement tests and three numerical examples of three-phase viscous fluid flows in 3D are presented to benchmark the effectiveness of the model as well as the efficiency of the numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  2. Blanchette, F., Shapiro, A.M.: Drops settling in sharp stratification with and without marangoni effects. Phys. Fluids. 24, 042104 (2012)

    Article  Google Scholar 

  3. Boyer, F., Lapuerta, C.: Study of a three component Cahn–Hilliard flow model. ESAIM Math. Modelling. Numer. Anal. 40(4), 653–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM Math. Model. Numer. Anal. 45(4), 697–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brannick, J., Liu, C., Qian, T., Sun, H.: Diffuse interface methods for multiple phase materials: an energetic variational approach. Numer. Math. Theory Methods Appl. 8, 220–236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.A., Muler, N.E.: An \(L^\infty \) bound for solutions of the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 133(2), 129–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (2005)

    Article  Google Scholar 

  8. Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Chem. Phys. 257, 192–215 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Condette, N., Melcher, C., Süli, E.: Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth. Math. Comp. 80, 205–223 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doostmohammadi, A., Dabiri, S., Ardekani, A.M.: A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratified fluid. J. Fluid Mech. 750, 5–32 (2014)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Liu, C., Wang, X.: Phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fick, A.: Über diffusion. Poggendorff’s Annalen der Physik und Chemie 94, 59–86 (1855)

    Article  Google Scholar 

  13. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. J. Comput. Phys. 195, 6011–6045 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. J. Comput. Phys. 6(6), 815–831 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kapustina, M., Tsygankov, D., Zhao, J., Wesller, T., Yang, X., Chen, A., Roach, N., Elston, T.C., Wang, Q., Jacobson, K., Forest, M.G.: Modeling the excess cell membrane stored in a complex morphology of bleb-like protrusions. J. Comput. Phys. 12(3), e1004841 (2016)

    Google Scholar 

  17. Kessler, D., Nochetto, R.H., Schmidt, A.: A posteriori error control for the Allen–Cahn problem: circumventing gronwall’s inequality. J. Comput. Phys. 38, 129–142 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Kim, J., Lowengrub, J.: Phase field modeling and simulation of three-phase flows. J. Comput. Phys. 7, 435–466 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Kim, Junseok: Phase-field models for multi-component fluid flows. J. Comput. Phys. 12(3), 613–661 (2012)

    MathSciNet  Google Scholar 

  20. Lin, F.H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. J. Comput. Phys. 48, 501–537 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, C., Walkington, N.J.: An Eulerian description of fluids containing visco-hyperelastic particles. Phys. D 159, 229–252 (2001)

    MATH  Google Scholar 

  23. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Phys. D 454(1978), 2617–2654 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Phys. D 29, 584–618 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. D 37, 405–426 (1931)

    MATH  Google Scholar 

  26. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. D 38, 2265–2279 (1931)

    MATH  Google Scholar 

  27. Rayleigh, L.: On the theory of surface forces II. Philos. Mag. 33, 209 (1892)

    Article  MATH  Google Scholar 

  28. Shen, J., Yang, X.: Energy stable schemes for Cahn–Hilliard phase-field model of two-phase incompressible flows. Philos. Mag. 31, 743–758 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Philos. Mag. 28, 1169–1691 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscositites. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Yang, X.: Decoupled energy stable schemes for phase filed models of two phase complex fluids. SIAM J. Sci. Comput. 36, N122–B145 (2014)

    Article  Google Scholar 

  32. van der Waals, J.: The thermodynamic theory of capillarity under the hypothesis of a continuous density variation. J. Stat. Phys. 20, 197–244 (1893)

    Google Scholar 

  33. Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218(1), 417–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, X., Forest, M.G., Li, H., Liu, C., Shen, J., Wang, Q., Chen, F.: Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids. J. Comput. Phys. 236, 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, X., Forest, M.G., Wang, Q.: Near equilibrium dynamics and one-dimensional spatial-temporal structures of polar active liquid crystals. Chin. Phys. B 23(11), 118701 (2014)

    Article  Google Scholar 

  36. Yang, X., Wang, Q.: Capillary instability of axisymmetric active liquid crystal jets. Soft Matter 10(35), 6758–6776 (2014)

    Article  Google Scholar 

  37. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. Soft Matter 515, 293–317 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Zhao, J., Shen, Y., Happasalo, M., Wang, Z., Wang, Q.: A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. Soft Matter 392, 83–98 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Zhao, J., Wang, Q.: A 3D hydrodynamic model for cytokinesis of eukaryotic cells. Soft Matter 19(3), 663–681 (2016)

    MathSciNet  Google Scholar 

  40. Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids. Soft Matter 305, 539–556 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

H. Li is partially supported by NSFC grant NSFC-11471372. Q. Wang is partially supported by NSF grants DMS-1200487, DMS-1517347, AFOSR Grant FA9550-12-1-0178 and an SC EPSCOR GEAR award. X. Yang is partially supported by NSF Grants DMS-1200487, DMS-1418898, and AFOSR Grant FA9550-12-1-0178. The authors thank Professor Chun Liu for stimulating discussions and insightful comments. X. Yang thanks Institute of Software of Chinese Academy of Science for using their facilities for this research. J. Zhao and X. Yang thank the hospitality of Beijing Computational Science Research Center during their visits when the research was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, H., Wang, Q. et al. Decoupled Energy Stable Schemes for a Phase Field Model of Three-Phase Incompressible Viscous Fluid Flow. J Sci Comput 70, 1367–1389 (2017). https://doi.org/10.1007/s10915-016-0283-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0283-9

Keywords

Navigation