Skip to main content
Log in

Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study the a priori error analysis of finite element methods for Biot’s consolidation model. We consider a formulation which has the stress tensor, the fluid flux, the solid displacement, and the pore pressure as unknowns. Two mixed finite elements, one for linear elasticity and the other for mixed Poisson problems are coupled for spatial discretization, and we show that any pair of stable mixed finite elements is available. The novelty of our analysis is that the error estimates of all the unknowns are robust for material parameters. Specifically, the analysis does not need a uniformly positive storage coefficient, and the error estimates are robust for nearly incompressible materials. Numerical experiments illustrating our theoretical analysis are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anandarajah, A.: Computational Methods in Elasticity and Plasticity: Solids and Porous Media. SpringerLink: Bücher, Springer, New York (2010)

    Book  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér 19(1), 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Douglas Jr., J.: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1, 347–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Douglas Jr., J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76(260), 1699–1723 (electronic) (2007)

  6. Arnold, D.N., Lee, J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 2743–2769 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1992)

    Google Scholar 

  11. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai, Z., Starke, G.: First-order system least squares for the stress-displacement formulation: linear elasticity. SIAM J. Numer. Anal. 41(2), 715–730 (electronic) (2003)

  13. Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219(17), 9043–9056 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79(271), 1331–1349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Boer, R.: Trends in Continuum Mechanics of Porous Media, Theory and Applications of Transport in Porous Media, vol. 18. Springer, Dordrecht (2005)

    Book  MATH  Google Scholar 

  16. Fraejis de Veubeke, B.M.: Stress function approach. In: Proceedings of the World Congress on Finite Element Methods in Structural Mechanics, vol. 5, pp. J.1 – J.51 (1975)

  17. Lawrence, C.: Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  18. Falk, R.S.: Finite elements for linear elasticity. In: Boffi, D., Gastaldi, L. (eds.) Mixed Finite Elements: Compatibility Conditions, vol. 1939. Springer, New York (2008)

    Google Scholar 

  19. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer, Berlin, Theory and algorithms (1986)

  20. Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32(1), 352–372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin, M.E.: An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, vol. 158. Academic Press Inc., New York (1981)

    Google Scholar 

  22. Guzmán, J.: A unified analysis of several mixed methods for elasticity with weak stress symmetry. J. Sci. Comput. 44(2), 156–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989)

    MATH  Google Scholar 

  24. Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43(1), 318–339 (electronic) (2005)

  25. Lee, J.J.: Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress. Adv. Comput. Math. 42(2), 361–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Numerical Methods in Engineering, Wiley, New Jersey (1998)

    MATH  Google Scholar 

  27. Logg, A., Mardal, K.-A., Wells, G.N. (eds.): Automated solution of differential equations by the finite element method, Lecture Notes in Computational Science and Engineering, vol. 84, Springer, Heidelberg, The FEniCS book (2012)

  28. Murad, M.A., Loula, A.F.D.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95(3), 359–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Murad, M.A., Thomée, V., Loula, A.F.D.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33(3), 1065–1083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nédélec, J.-C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nédélec, J.-C.: A new family of mixed finite elements in \(\mathbf{R}^3\). Numer. Math. 50(1), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case. Comput. Geosci. 11(2), 145–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems, mathematical aspects of finite element methods. In: Proceedings of Conference, Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975, Springer, Berlin, pp. 292–315. Lecture Notes in Math., vol. 606 (1977)

  37. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48(4), 447–462 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yi, S.-Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 29(5), 1749–1777 (2013)

    Article  MATH  Google Scholar 

  41. Yi, S.-Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)

    Article  MATH  Google Scholar 

  42. Yosida, K.: Functional analysis, 6th edn. Springer, Springer Classics in Mathematics, New York (1980)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghun J. Lee.

Additional information

The work of Jeonghun J. Lee has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement 339643 (PI : Prof. Ragnar Winther).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J. Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model. J Sci Comput 69, 610–632 (2016). https://doi.org/10.1007/s10915-016-0210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0210-0

Keywords

Mathematics Subject Classification

Navigation