Skip to main content

Advertisement

Log in

A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a linear numerical scheme for a model of epitaxial thin film growth without slope selection. The PDE, which is a nonlinear, fourth-order parabolic equation, is the L 2 gradient flow of the energy \(\int_{\Omega}( - \frac{1}{2} \ln(1 + |\nabla\phi|^{2} ) + \frac{\epsilon^{2}}{2}|\Delta\phi(\mathbf{x})|^{2})\,\mathrm{d}\mathbf{x}\). The idea of convex-concave decomposition of the energy functional is applied, which results in a numerical scheme that is unconditionally energy stable, i.e., energy dissipative. The particular decomposition used here places the nonlinear term in the concave part of the energy, in contrast to a previous convexity splitting scheme. As a result, the numerical scheme is fully linear at each time step and unconditionally solvable. Collocation Fourier spectral differentiation is used in the spatial discretization, and the unconditional energy stability is established in the fully discrete setting using a detailed energy estimate. We present numerical simulation results for a sequence of ϵ values ranging from 0.02 to 0.1. In particular, the long time simulations show the −log(t) decay law for the energy and the t 1/2 growth law for the surface roughness, in agreement with theoretical analysis and experimental/numerical observations in earlier works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehrlich, G., Hudda, F.G.: Atomic view of surface diffusion: tungsten on tungsten. J. Chem. Phys. 44, 1036–1099 (1966)

    Google Scholar 

  2. Evans, J.W., Thiel, P.A., Bartelt, M.C.: Morphological evolution during epitaxial thin film growth: formation of 2D islands and 3D mounds. Surf. Sci. Rep. 61, 1–128 (2006)

    Article  Google Scholar 

  3. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)

    Google Scholar 

  4. Guan, Z., Wang, C., Wise, S.M.: Convergence of a convex splitting scheme for the nonlocal Cahn-Hilliard Equation (in preparation)

  5. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the Phase Field Crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., Orr, B.G.: Stable and unstable growth in molecular beam epitaxy. Phys. Rev. Lett. 72, 116–119 (1994)

    Article  Google Scholar 

  7. Kohn, R.V.: Energy-driven pattern formation. In: Sanz-Solé, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. 1, pp. 359–383. European Mathematical Society Publishing House, Madrid (2006)

    Google Scholar 

  8. Kohn, R.V., Yan, X.: Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math. 56, 1549–1564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, B.: High-order surface relaxation versus the Ehrlich-Schwoebel effect. Nonlinearity 19, 2581–2603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, B., Liu, J.-G.: Thin film epitaxy with or without slope selection, Euro. J. Appl. Math. 14, 713–743 (2003)

    MATH  Google Scholar 

  11. Li, B., Liu, J.-G.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Moldovan, D., Golubovic, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61, 6190–6214 (2000)

    Google Scholar 

  13. Schwoebel, R.L.: Step motion on crystal surfaces: II. J. Appl. Phys. 40, 614–618 (1969)

    Article  Google Scholar 

  14. Wise, S.M., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the Phase Field Crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst., Ser. A 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Conde, S., Wang, C. et al. A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection. J Sci Comput 52, 546–562 (2012). https://doi.org/10.1007/s10915-011-9559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9559-2

Keywords

Navigation