Skip to main content
Log in

High Order Finite Element Calculations for the Cahn-Hilliard Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we propose a numerical method based on high degree continuous nodal elements for the Cahn-Hilliard evolution. The use of the p-version of the finite element method proves to be very efficient avoiding difficult computations or strategies like \(\mathcal{C}^{1}\) elements, adaptive mesh refinement, multi-grid resolution or isogeometric analysis. Beyond the classical benchmarks and comparisons with other existing methods, a numerical study has been carried out to investigate the influence of a polynomial approximation of the logarithmic free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M.: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Szabo, B.A., Katz, I.N.: The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Blowey, J.F.: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math. Comput. 68(226), 487–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates, P.W., Fife, P.C.: The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis, vol. V, pp. 209–485. North-Holland, Amsterdam (1997)

    Google Scholar 

  7. Blömker, D., Maier-Paape, S., Wanner, T.: Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. Trans. Am. Math. Soc. 360(1), 449–489 (2008) (electronic)

    Article  MATH  Google Scholar 

  8. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. Eur. J. Appl. Math. 2(3), 233–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonnaillie-Noël, V., Dauge, M., Martin, D., Vial, G.: Computations of the first eigenpairs for the Schrödinger operator with magnetic field. Comput. Methods Appl. Mech. Eng. 196(37–40), 3841–3858 (2007)

    Article  MATH  Google Scholar 

  10. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9(9), 795–801 (1961)

    Article  Google Scholar 

  11. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258 (1958)

    Article  Google Scholar 

  13. Cahn, J.W., Hilliard, J.E.: Spinodal decomposition: a reprise. Acta Metall. 19(2), 151–161 (1971)

    Article  Google Scholar 

  14. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Debussche, A., Dettori, L.: On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 24(10), 1491–1514 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elliott, C.M., French, D.A.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008)

    Article  MATH  Google Scholar 

  19. Goudenège, L.: Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection. Stoch. Process. Appl. 119(10), 3516–3548 (2009)

    Article  MATH  Google Scholar 

  20. Grant, C.P.: Spinodal decomposition for the Cahn-Hilliard equation. Commun. Partial Differ. Equ. 18(3–4), 453–490 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II. The h-p version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn-Hilliard equation. J. Comput. Phys. 212(1), 288–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Langer, J.S.: Theory of spinodal decomposition in alloys. Ann. Phys. 65, 53–86 (1971)

    Article  Google Scholar 

  25. Ma, T., Wang, S.: Cahn-Hilliard equations and phase transition dynamics for binary systems (2008). arXiv:0806.1286v1

  26. Maier-Paape, S., Miller, U.: Path-following the equilibria of the Cahn-Hilliard equation on the square. Comput. Vis. Sci. 5(3), 115–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maier-Paape, S., Wanner, T.: Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. I. Probability and wavelength estimate. Commun. Math. Phys. 195(2), 435–464 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maier-Paape, S., Wanner, T.: Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: nonlinear dynamics. Arch. Ration. Mech. Anal. 151(3), 187–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martin, D.: The finite element library Mélina (2008). http://homepage.mac.com/danielmartin/melina/

  30. Miranville, A., Zelik, S.: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete Contin. Dyn. Syst. 28(1), 275–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Novick-Cohen, A.: The Cahn-Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8(2), 965–985 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn-Hilliard equation. Physica D 10(3), 277–298 (1984)

    Article  MathSciNet  Google Scholar 

  33. Pego, R.L.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond. Ser. A 422(1863), 261–278 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sander, E., Wanner, T.: Monte Carlo simulations for spinodal decomposition. J. Stat. Phys. 95(5–6), 925–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sander, E., Wanner, T.: Unexpectedly linear behavior for the Cahn-Hilliard equation. SIAM J. Appl. Math. 60(6), 2182–2202 (2000) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stephan, E.P., Suri, M.: On the convergence of the p-version of the boundary element Galerkin method. Math. Comput. 52(185), 31–48 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Stogner, R.H., Carey, G.F., Murray, B.T.: Approximation of Cahn-Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C 1 elements. Int. J. Numer. Methods Eng. 76(5), 636–661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77(1–2), 183–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wanner, T.: Maximum norms of random sums and transient pattern formation. Trans. Am. Math. Soc. 356(6), 2251–2279 (2004) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Goudenège.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goudenège, L., Martin, D. & Vial, G. High Order Finite Element Calculations for the Cahn-Hilliard Equation. J Sci Comput 52, 294–321 (2012). https://doi.org/10.1007/s10915-011-9546-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9546-7

Keywords

Navigation